International Telecommunication Union

ITU-T H.264

TELECOMMUNICATION (08/2021)
STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services — Coding of moving
video

Advanced video coding for generic audiovisual
services

Recommendation ITU-T H.264

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS

INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General

Transmission multiplexing and synchronization

Systems aspects

Communication procedures

Coding of moving video

Related systems aspects

Systems and terminal equipment for audiovisual services

Directory services architecture for audiovisual and multimedia services
Quality of service architecture for audiovisual and multimedia services
Telepresence, immersive environments, virtual and extended reality
Supplementary services for multimedia

MOBILITY AND COLLABORATION PROCEDURES

Overview of Mobility and Collaboration, definitions, protocols and procedures
Mobility for H-Series multimedia systems and services

Mobile multimedia collaboration applications and services

Security for mobile multimedia systems and services

Security for mobile multimedia collaboration applications and services
VEHICULAR GATEWAYS AND INTELLIGENT TRANSPORTATION SYSTEMS (ITS)
Architecture for vehicular gateways

Vehicular gateway interfaces

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL

Advanced multimedia services and applications

Content delivery and ubiquitous sensor network applications

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV

General aspects

IPTV terminal devices

IPTV middleware

IPTV application event handling

IPTV metadata

IPTV multimedia application frameworks

IPTV service discovery up to consumption

Digital Signage

E-HEALTH MULTIMEDIA SYSTEMS, SERVICES AND APPLICATIONS
Personal health systems

\I/r\lltz‘r’il)g)erability compliance testing of personal health systems (HRN, PAN, LAN, TAN and

Multimedia e-health data exchange services
Safe listening

H.100-H.199

H.200-H.219
H.220-H.229
H.230-H.239
H.240-H.259
H.260-H.279
H.280-H.299
H.300-H.349
H.350-H.359
H.360-H.369
H.420-H.439
H.450-H.499

H.500-H.509
H.510-H.519
H.520-H.529
H.530-H.539
H.540-H.549

H.550-H.559
H.560-H.569

H.610-H.619
H.620-H.629
H.640-H.649

H.700-H.719
H.720-H.729
H.730-H.739
H.740-H.749
H.750-H.759
H.760-H.769
H.770-H.779
H.780-H.789

H.810-H.819
H.820-H.859

H.860-H.869
H.870-H.879

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T H.264

Advanced video coding for generic audiovisual services

Summary

Recommendation ITU-T H.264 | International Standard ISO/IEC 14496-10 represents an evolution of the existing video
coding standards (ITU-T H.261, ITU-T H.262, and ITU-T H.263) and it was developed in response to the growing need
for higher compression of moving pictures for various applications such as videoconferencing, digital storage media,
television broadcasting, Internet streaming, and communication. It is also designed to enable the use of the coded video
representation in a flexible manner for a wide variety of network environments. The use of this Recommendation |
International Standard allows motion video to be manipulated as a form of computer data and to be stored on various
storage media, transmitted and received over existing and future networks and distributed on existing and future
broadcasting channels.

The 1% edition of Rec. ITU-T H.264 was approved in 2003-05.

Corrigendum 1 to the 1% version of Rec. ITU-T H.264, approved in 2004-05, included various minor corrections and
clarifications. This corrigendum was never published independently, its content having been included in the 1%t published
edition.

The 2" edition of ITU-T H.264, approved in 2005-03, contained modifications of the video coding standard to add four
new profiles, referred to as the High, High 10, High 4:2:2, and High 4:4:4 profiles, to improve video quality capability and
to extend the range of applications addressed by the standard (for example, by including support for a greater range of
picture sample precision and higher-resolution chroma formats). Additionally, a definition of new types of supplemental
data was specified to further broaden the applicability of the video coding standard. Finally, a number of corrections to
errors in the published text were included.

Corrigendum 1 to the 2" edition of Rec. ITU-T H.264, approved in 2005-09, corrected and updated various minor aspects
to bring the ITU-T version of the text up to date relative to the 2005-04 output status approved as a new edition of the
corresponding jointly-developed and technically-aligned text ISO/IEC 14496-10. It additionally fixed a number of minor
errors and needs for clarification and defined three previously-reserved sample aspect ratio indicators. This corrigendum
was never published independently, its content having been included in the 2" published edition, which was published in
2005-11.

Amendment 1, "Support of additional colour spaces and removal of the High 4:4:4 Profile", approved in 2006-06, contained
alterations to Rec. ITU-T H.264 | ISO/IEC 14496-10, Advanced Video Coding, to specify the support of additional colour
spaces and to remove the definition of the High 4:4:4 profile.

Amendment 2, "New profiles for professional applications”, approved in 2007-04, contained extensions to
Rec. ITU-T H.264 | ISO/IEC 14496-10 Advanced Video Coding to specify the support of five additional profiles intended
primarily for professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, and
High 4:4:4 Predictive profiles) and two new types of supplemental enhancement information (SEI) messages (the post-
filter hint SEI message and the tone mapping information SEI message).

Amendment 3, "Scalable video coding”, approved in 2007-11 in an integrated 3™ ITU-T H.264 edition, contained
extensions to Rec. ITU-T H.264 | ISO/IEC 14496-10, Advanced Video Coding, to specify a scalable video coding extension
in three profiles (the Scalable Baseline, Scalable High, and Scalable High Intra profiles).

ITU-T H.264 (2005) Amd.2 (2007) was available only as pre-published text since it was superseded by ITU-T H.264
Amd.3 (2007-11) before its publication. Furthermore, ITU-T H.264 Amd.3 was not published separately. The changes
introduced by the three amendments were integrated into the 3 ITU-T H.264 edition, which was approved in 2007-11.

Corrigendum 1 to the 2" edition, approved in 2009-01, provided a significant number of minor corrections, clarifications,
consistency improvements and formatting improvements drafted in response to accumulated errata reports collected since
publication of the 2" edition (dated 2005-03, which included a Cor.1 approved in 2005-09).

The 4" edition of ITU-T H.264, approved in 2009-05, contained enhancement extensions to support multiview video
coding (MVC), specification of a "Constrained Baseline Profile", and some miscellaneous corrections and clarifications.

The 5" edition of ITU-T H.264, approved in 2010-03, contained the specification of a new profile (the Stereo High profile)
for two-view video coding with support of interlaced coding tools, the specification a new SEI message (the frame packing
arrangement SEI message), and some miscellaneous corrections and clarifications.

The 6" edition of ITU-T H.264, approved in 2011-07, contained the specification of a new level (Level 5.2) supporting
higher processing rates in terms of maximum macroblocks per second, a new profile (the Progressive High profile) to
enable implementation of decoders supporting only the frame coding tools of the previously specified High profile, and
included miscellaneous corrections and clarifications.

Rec. ITU-T H.264 (08/2021) i

The 7™ edition of Rec. ITU-T H.264, approved in 2012-01, contained the specification of three additional profiles intended
primarily for communication applications (the Constrained High, Scalable Constrained Baseline, and Scalable Constrained
High profiles).

The 8" edition of Rec. ITU-T H.264, approved in 2013-04, contained an additional profile for multiview video coding with
depth information (the Multiview Depth High profile), and contained additional SEI message enhancements, additional
colorimetry identifiers, and corrections and clarifications.

The 9" edition of Rec. ITU-T H.264 approved in 2014-02 specified multi-resolution frame-compatible (MFC)
enhancement for stereoscopic video coding, including the specification of an additional profile, the MFC High profile, an
enhanced profile for combined multiview video coding with depth information (the Enhanced Multiview Depth High
profile), and includes miscellaneous minor corrections and clarifications.

The 10" edition of Rec. ITU-T H.264 approved in 2016-02 specified MFC stereoscopic video with depth maps, including
the specification of an additional profile, the MFC Depth High profile, and the mastering display colour volume SEI
message, additional colour-related video usability information codepoint identifiers, and miscellaneous minor corrections
and clarifications.

The 11" edition of Rec. ITU-T H.264, approved in 2016-10, specified additional levels of decoder capability supporting
larger picture sizes (Levels 6, 6.1, and 6.2), the green metadata SEI message, the alternative depth information SEI
message, additional colour-related video usability information codepoint identifiers, and miscellaneous minor corrections
and clarifications.

The 12" edition of Rec. ITU-T H.264, approved in 2017-04, specified the Progressive High 10 profile; support for
additional colour-related indicators including the hybrid log-gamma transfer characteristics indication, the alternative
transfer characteristics SEI message, the ICTCP colour matrix transformation, chromaticity-derived constant luminance
and non-constant luminance colour matrix coefficients, the colour remapping information SEI message; and miscellaneous
minor corrections and clarifications.

The 13" edition of Rec. ITU-T H.264, approved in 2019-06, specified additional SEI messages for ambient viewing
environment, content light level information, content colour volume, equirectangular projection, cubemap projection,
sphere rotation, region-wise packing, omnidirectional viewport, SEI manifest, and SEI prefix, and miscellaneous minor
corrections and clarifications

This 14" edition of Rec. ITU-T H.264, approved in 2021-08, specifies additional SEI messages for annotated regions and
shutter interval information, and miscellaneous minor corrections and clarifications.

History
Edition Recommendation Approval Study Group Unique ID*
1.0 ITU-T H.264 2003-05-30 16 11.1002/1000/6312
11 ITU-T H.264 (2003) Cor.1 2004-05-07 16 11.1002/1000/7255
2.0 ITU-T H.264 2005-03-01 16 11.1002/1000/7825
2.1 ITU-T H.264 (2005) Cor.1 ~ 2005-09-13 16 11.1002/1000/8572
2.2 ITU-T H.264 (2005) Amd. 1 2006-06-13 16 11.1002/1000/8811
23 ITU-T H.264 (2005) Amd. 2 2007-04-06 16 11.1002/1000/9036
3.0 ITU-T H.264 2007-11-22 16 11.1002/1000/9226
31 ITU-T H.264 (2007) Cor.1 ~ 2009-01-13 16 11.1002/1000/9519
4.0 ITU-T H.264 2009-03-16 16 11.1002/1000/9710
5.0 ITU-T H.264 2010-03-09 16 11.1002/1000/10635
6.0 ITU-T H.264 2011-06-29 16 11.1002/1000/11293
7.0 ITU-T H.264 2012-01-13 16 11.1002/1000/11466
8.0 ITU-T H.264 2013-04-13 16 11.1002/1000/11830
9.0 ITU-T H.264 (V9) 2014-02-13 16 11.1002/1000/12063
10.0 ITU-T H.264 (V10) 2016-02-13 16 11.1002/1000/12641
11.0 ITU-T H.264 (V11) 2016-10-14 16 11.1002/1000/12904
12.0 ITU-T H.264 (V12) 2017-04-13 16 11.1002/1000/13189
13.0 ITU-T H.264 (V13) 2019-06-13 16 11.1002/1000/13903
14.0 ITU-T H.264 (V14) 2021-08-22 16 11.1002/1000/14659

To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the
Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

i Rec. ITU-T H.264 (08/2021)

http://handle.itu.int/11.1002/1000/6312
http://handle.itu.int/11.1002/1000/7255
http://handle.itu.int/11.1002/1000/7825
http://handle.itu.int/11.1002/1000/8572
http://handle.itu.int/11.1002/1000/8811
http://handle.itu.int/11.1002/1000/9036
http://handle.itu.int/11.1002/1000/9226
http://handle.itu.int/11.1002/1000/9519
http://handle.itu.int/11.1002/1000/9710
http://handle.itu.int/11.1002/1000/10635
http://handle.itu.int/11.1002/1000/11293
http://handle.itu.int/11.1002/1000/11466
http://handle.itu.int/11.1002/1000/11830
http://handle.itu.int/11.1002/1000/12063
http://handle.itu.int/11.1002/1000/12641
http://handle.itu.int/11.1002/1000/12904
http://handle.itu.int/11.1002/1000/13189
http://handle.itu.int/11.1002/1000/13903
http://handle.itu.int/11.1002/1000/14659
http://handle.itu.int/11.1002/1000/11830-en

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other
obligatory language such as "must™ and the negative equivalents are used to express requirements. The use of
such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected
by patents/software copyrights, which may be required to implement this Recommendation. However,
implementers are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2021

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of ITU.

Rec. ITU-T H.264 (08/2021) iii

http://www.itu.int/ITU-T/ipr/

0

a A W N -

iv

Table of Contents

Page

[goTo Do {To] TP PR 1
050 o o] [T 11U SO 1
0.2 PUIDIOSE ..ttt et a et o ke e okt eoa bt e e eR b et e kbt e e b et e eR R et e eREe e e R bt e e ebbe e e nbe e e nbeeennneans 1
O R Y o] o] [Tot= LA oL SO T U TP PR P PP P PP PP PP PPTPPTURPROPN 1
0.4 Publication and versions of this SPECITICALION..........ccuiiiiiiiiiii e 1
0.5 PrOfilES @Nd TEVEIS ... bbbt bbb bt sb e e bbb sbe b sre e 3
0.6 Overview of the deSigN ChAraCLErISTICS.eitiitiiitieit e b e bbb ee s 4
0.6.1 PrEAICTIVE COUINGttt ettt b et b et e b e bt et e s b bt e b bt e b s be e e nbe s e 5
0.6.2 Coding of progressive and iNterlaced VIAEO...........cciveiiiiiiiiie e 5
0.6.3 Picture partitioning into macroblocks and smaller Partitionsccccccvvveiiiniiiiiese e 5
0.6.4 Spatial redundancy FEAUCTION..........oiiiiieie et e be e et e sneeanbeesneesneeaneeenes 5
0.7 How to read this SPECITICALION........cciiiiiiiiie et e st et e e e e sae e s abeete e saeesnbeenreerees 5
RS To0] oL PP PPTTPPR 6
NOIMALIVE TEIEIBINCES ...ttt ettt bttt b bt s e s bt bt e bt b e b e skt e b e sbe e s e e sbeabeenbesbeesbenbeereens 6
D) 140 OSSPSR 7

F N o] o] =Y LT LTS 15
(070 01V oo] LS ST TOTRUR TR UPRTURRN 16
5.1 ATTENMELIC OPEIALOTS. ... ettt bbbt h bbb bbbt ettt ettt e b bt e 16
LI oo o1l o - (o] £ OO P TR R TP TP PR 16
LT B = 1 - L o] = Lo 01T o) £ USSR 17
LSRR =11 Y o o< 10] £ PP RPN 17
5.5 ASSIGNMENT OPEIALONS ... ettt itttk b ettt bbbt h bbb e bt e bt et b e et b e e n e bt et e bt bt e b bt e 17
5.6 RANGE NOTALION ...ttt b bbbt b et b et b e n ekt sb e bt bt e bt e n e 17
5.7 MathematiCal fUNCLIONSoviiiiii ettt bbbt et re e b e 18
5.8 Order Of OPEration PrECRUBNCE.ccvieiei ittt e e e e e s e st e e be et e e sab e e s be e teesaeeasbeesbeesbeesabeeseeesaeesaeesseeenes 19
5.9 Variables, syntax elements, and tabIES.ooiiiiiiiiii e 19
5.10 Text description Of 10giCal OPEIatiONS...........iiiiiiiiiieiri bbb e 20
D00 PIOCESSES. . ttetteuttetee ettt etk e ekttt ekt bt a ekt E e et R e ke R R A e R £ e R R b e 4R e e Rt e ARt e bt e nh bRt e be e e arne e 21
Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 21
6.1 BIESIIEAM FOMMALS.....eiuiiitiiiie ettt ettt s bt b e st e bt st e bt e bt et e b e e st e nbeaneenns 21
6.2 Source, decoded, and oUtPUL PICTUIE TOIMALS..........eoiiiiiii i sreenaeas 22
6.3 Spatial subdivision Of PICTUrES aNd SHICEScouiiiie i 26
6.4 Inverse scanning processes and derivation processes for NeIghDOUIS.cuiviiiiiiiiiiiie e 27
6.4.1 Inverse MacroblOCK SCANNING PrOCESSvviiveeiieeiriiieesie e st e s iteesteesteesbe s ste e teesra e s sbeesteesraeebeesbeesreesseeasseens 27
6.4.2 Inverse macroblock partition and sub-macroblock partition Scanning Process...........ccocvevereriieneniennenn 27
6.4.2.1 Inverse macroblock partition SCANNING PrOCESSoiviviiiiieiirienie ettt 28
6.4.2.2 Inverse sub-macroblock partition SCANNING PrOCESS.ccouviiviiieeiie et 28
6.4.3 Inverse 4x4 1uma bIOCK SCANNING PIOCESS.c.viiuiiieieiieeie sttt ettt sttt sttt s sbe e b e 29
6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3........ccccovvieiiiiinnieniene 29
6.4.5 Inverse 8x8 1uma bIOCK SCANNING PIOCESS.c.vi ittt 29
6.4.6 Inverse 8x8 Ch or Cr block scanning process for ChromaArrayType equal to 3........ccccevvveveevieeiiveennnns 30
6.4.7 Inverse 4x4 chroma blOCK SCANNING PrOCESS.civiiuiiiieeiieeiee ettt ettt st e e sbe e e e sneeeneeen 30
6.4.8 Derivation process of the availability for macroblock addresses.........cccovvviiviiieiie i 30
6.4.9 Derivation process for neighbouring macroblock addresses and their availabilitycccccoociiieens 30
6.4.10 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames.....31
6.4.11 Derivation processes for neighbouring macroblocks, blocks, and partitionscccoccoviiniiiiiiiinns 32
6.4.11.1 Derivation process for neighbouring macroblOCKSccccoiriiiiiiiiiii e 33
6.4.11.2 Derivation process for neighbouring 8x8 [uma blOCKc.ccoeeiiiiiiiie i 33
6.4.11.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3.............. 34
6.4.11.4 Derivation process for neighbouring 4x4 Tuma bIOCKS............ccovviiiiiiiiie e 34
6.4.11.5 Derivation process for neighbouring 4x4 chroma BIOCKS..........ccooviiiiiiiiiiiee e, 34
6.4.11.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3.............. 35
6.4.11.7 Derivation process for neighbouring Partitionscccoceruiiiiiniiiiie e 35
6.4.12 Derivation process for neighbouring I0CALIONScoiiiiiiiiiiiii e 36
6.4.12.1 Specification for neighbouring locations in fields and non-MBAFF framescccccoeveviveiieeneennnn, 37

Rec. ITU-T H.264 (08/2021)

6.4.12.2 Specification for neighbouring locations in MBAFF framesccccoiiiiiiiniienieneene e 37

6.4.13 Derivation processes for block and partition INAICEScccvevieiiiiii e 39
6.4.13.1 Derivation process for 4x4 [uma BIOCK INAICES..........cociiiiiiiiiiie e 39
6.4.13.2 Derivation process for 4x4 chroma block iNdIiCES.........cccovvviiviiieiiec e 39
6.4.13.3 Derivation process for 8x8 luma BlIOCK INICES..........cociiiiiiiiiiiii e 39
6.4.13.4 Derivation process for macroblock and sub-macroblock partition indicesccoccvveiieniineniennnn 39

T SYNTAX AN SEIMANTICSettetteitiete ettt ettt b ettt b et b st b e s e b e s ekt b e bt e bt e bt e bt e n ekt e s b e bt e bt e b nbe e b e 40
7.1 Method of specifying syntax in tabular FOrM ...t s 40
7.2 Specification of syntax functions, categories, and deSCHPLOISc.vcivereiiieiiii e esee e e s 41
A T 01 v > QLI = o U] Tl (] o ST 43

7.3.1 INAL UNTE SYNEAX .+ttt sb et sb bbbt bbb s bt b e nb e b e e b e et e e b e sbeaseenbeabe e b 43

7.3.2 Raw byte sequence payloads and RBSP trailing bits SYNtaXccccevvvviiiiiiiiiieeiiie e 43
7.3.2.1 Sequence parameter SEt RBSP SYNTAXcc.uuiiiiiiiiiiiiiiie ittt 43
7.3.2.2 Picture parameter Set RBSP SYNTAXccviiiuiiiieiieeiieiie e e se et e et esaeesnveenaeesneesneesnne s 47
7.3.2.3 Supplemental enhancement information RBSP SYNaXc.ccccovriiiiiiiiiiiie e 48
7.3.24 Access unit delimiter RBSP SYNTAX........cviciveiireiieiieeeesiesie e e seesve e esteessee e seesneesneeanseesseesnnes 48
7.3.25 ENd Of SEQUENCE RBSP SYNTAXccutiiiiiiiiiiiieiiee ettt ettt et e e enneas 49
7.3.2.6 ENd OF Stream RBSP SYNTAX.........coiiiiiiiiiieiisiiee ettt bbbttt 49
7.3.2.7 Filler data RBSP SYNIAX.......ccuiiiiieiieeiieiieiieeseeste e steesieestesbe e teessveabeesteesseasnbaanbeesteesnseanreesaeennnas 49
7.3.2.8 Slice layer without partitioning RBSP SYNTAX..........cccueiuiiiiiiniriieniesieie e 49
7.3.2.9 Slice data partition RBSP SYNTAXccviiiriieeieeiieieeseeseesie e e e e e ste e eanse e e e sneesnseaneeenseenneas 49
7.3.2.10 RBSP slice trailing DitS SYNAX........coiiiiiiiiiiiie ittt 50
7.3.2.11 RBSP trailing DitS SYNTAX......cviiuiiiiitiiiiitiiiietes et bbb et 50
7.3.2.12 Prefix NAL UNIE RBSP SYNEAX ...eotiiiiiiiiiiiieiiee ettt ettt e e nneas 51
7.3.2.13 Slice layer exXtension RBSP SYNTAXoiuiiieriiriiiiiiiaiesiiaie ettt sttt st sbe e 51

7.3.3 Y Lo g Lo Lo LT Y -V SRR 51
7.3.3.1 Reference picture list MOdifiCation SYNTAXc.covirieiiiiiiieniiies e 53
7.3.3.2 Prediction weight table SYNAXcciiiiiiiiciic e 54
7.3.3.3 Decoded reference picture Marking SYNTAXoovieiieiiriiieiie et 55

7.3.4 STICE GALA SYNMTAX ...ttt bbbttt b et bt e m e b e sttt e st et n e e b et e e 56

7.35 [T (] o] (ol S Fo VY= G] RS UOUR RSP 57
7.35.1 MaCrobIOCK PrediCtiON SYNTAX........eeiiiteiieiieiieie sttt nb e 58
7.3.5.2 Sub-macroblock PrediCtion SYNTAX.........c.ecceeiieiiieiieee e e sie e e e se et e e eesreesneeaneeereenneas 59
7.3.5.3 RESIAUAI JALA SYNTAX ...viiitiitiiiiiitiiiieiti ettt b et b e bbbt e b e e e 60

1= 11T o oF SRR 63

7.4.1 NAL UNIE SEMBNTICS .ttt sttt bkttt e bt e sh ettt e bt e eb e e e bb e e nb e e nbeesbeeabeeanbeenbeen 63
7.4.1.1 Encapsulation of an SODB within an RBSP (infOrmative)c.ccoveiiiiiiinieiiiieseeese e 67
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences................ 68

7.4.2 Raw byte sequence payloads and RBSP trailing bits SEmManticsccoeoviieriieiiiiiiienie e 73
7421 Sequence parameter Set RBSP SEMANTICSciuiiiieiiieiiesiesie e steestee e see et e st e e sreesreesraesaeenneens 73
7.4.2.2 Picture parameter Set RBSP SEMANTICSc.coiiiiiiiiiiiie et 81
7.4.2.3 Supplemental enhancement information RBSP SEMANtICS........cccivveiiviieerieeiie e see e 84
7.4.2.4 Access unit delimiter RBSP SEMANTICS.ccueiiiiiiiiiiiiie e 84
7.425 ENd Of SeqUENCE RBSP SEMANTICSeivviiiiiiiiiitieie st 84
7.42.6 ENd Of Stream RBSP SEMANTICS.iiuiiiiiiiiieiiiiieie sttt sttt nbe e e 84
7427 Filler data RBSP SEIMANTICS........ccviitiiiiiiieiie ettt sttt e sae et e st sneesnee e 85
7.4.2.8 Slice layer without partitioning RBSP SEMANLICScccciiviiiriieeiieiiie e e 85
7.4.2.9 Slice data partition RBSP SEMANTICSciouiiiiiiiiiiiie et 85
7.4.2.10 RBSP slice trailing DitS SEMaNTICS........uiiiiiiiiiii e 86
7.4.2.11 RBSP trailing DitsS SEMANTICS.........ciiiieiiiie e et e e re e e tae e e sne e e e 86
7.4.2.12 Prefix NAL UNit RBSP SEMANTICScivviiiiiieeiie ittt sree e te et e e anbeeneeenneas 86
7.4.2.13 Slice layer extension RBSP SEMANTICSc.cciiviiiiiiieeiieiieiiteesie e e sre s ie e ste e e sre e teeste e e sbe e e e nnnas 86

743 SIICE NEAURT SEMANTICSvie ettt ettt b e sa et e et e sae e sbb e e st e e nbeesnaeenbeenbeesaeeaneeenes 86
7.4.3.1 Reference picture list modification SEMANTICScvveiviiiiiiiie e 92
7.4.3.2 Prediction weight table SEMANTICSouiiiiiiiiiie e 93
7.4.3.3 Decoded reference picture marking SEMANLICScoveviiiiiiniiieiiniee e e 93

7.4.4 SIHICE UALA SEMANTICSvevviiteeiie sttt bbbt s et be et e st e e st be e s b e beeneenbeane e e e 97

7.45 MaCrODIOCK TaYEF SEMANTICSc.viiiieiiiitieie ittt et sreebeenne 98
7.45.1 Macroblock prediCtion SEMANTICS.c.ciiviiiiieiieiie et e et s e e s e e sbaearee s 106
7.4.5.2 Sub-macroblock prediction SEMANTICS.viiviiiiiiii e 107
7.453 ReSIdUAl data SEMANTICSeiviiiiiieieiieie sttt ettt bbbt e sb et e b sbeennenreas 109

Rec. ITU-T H.264 (08/2021) v

8

Vi

DIECOTING PIOCESS. ...ttt ettt ekttt ettt b et b ekt b ekt b e s b e bt e b e e btk e bt eb e e b b e eb e e b b e eb e e b e e bt eb e e s bt ebeehbenbeebeenbeebeennenre s 111
8.1 INAL UNIt AECOUING PIOCESSeveeieiiteetie ittt ettt sttt sb e b bbb bbb e btk e e bt bt et e sbe e b e sbeebeenbesbeennenbeas 112
8.2 SIICE ABCOAING PIOCESSveiuveeieeiieeiteeieesteeaste e e esteesseeasteasteesteessbeaseeesteesaseaseeaseeesaeesseeeseeesseeateesreeeseeenseearenns 113

8.2.1 Decoding process for PICtUIE OB COUNT..........oiiiiiriiiieii sttt 113

8.2.1.1 Decoding process for picture order COUNt tYPE 0cvvevveeieiiiieeiiesee e ee e 114
8.2.1.2 Decoding process for picture order COUNt tYPE Looieiiiiiiiiiierie e 115
8.2.1.3 Decoding process for picture order COUNE tYPE 2cveieiiiiiiieiiiie e 116
8.2.2 Decoding process for macroblock t0 SHCe group Mapccueeiveeiieiieeiie e 117
8.2.2.1 Specification for interleaved Slice group Map LYPEccviiiiieiieiecie et 118
8.2.2.2 Specification for dispersed SIiCe group Map LYPE.....c.eccveeiiiiiieiie ettt ee e 118
8.2.2.3 Specification for foreground with left-over slice group map type........cccoeeeeeiirieiieeiie e 118
8.2.2.4 Specification for box-out SliCe group Map LYPES.....ccueerueeiieiieiie e sre e e e e e 119
8.2.2.5 Specification for raster scan SliCe group Map tYPESueeruerrieiieeiie ettt 119
8.2.2.6 Specification for wipe sliCe group Map LYPES ...c..eiveiiiieieiieeie sttt 119
8.2.2.7 Specification for explicit SIiCe group Map tYPE......cciiiieeiie et 120
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map......120

8.2.3 Decoding process for slice data Partitionsccccveiieiiiiii e 120

8.2.4 Decoding process for reference picture lists CONStIUCTIONcoviiiiiiieiie e 121

8.24.1 Decoding process for PICtUIE NUMDEISccveiiiiiie et ae et e e aeesreenreeas 121
8.2.4.2 Initialization process for reference Picture TistScoovioiiiiiiiiii e 122
8.2.4.3 Modification process for reference piCture liStS.........ccoovvriiiiiiiiiii i 125
8.2.5 Decoded reference picture Marking PrOCESScuieiuieiiiiieeiiie ittt ettt et sbee b sbe e saee e b 127
8.2.5.1 Sequence of operations for decoded reference picture marking Process...........ccovvevvererieeierieenennens 128
8.2.5.2 Decoding process for gaps in frame_NUMocoiiiiiiiccc e ae e 128
8.2.5.3 Sliding window decoded reference picture marking ProCeSScccioveiieeiienieiieaiee e 129
8.2.5.4 Adaptive memory control decoded reference picture marking proCessccccevvveeveereervesiveereeenns 129
LT T i - W o (=Yoo (o] o] o 1o=L T RSSO RPRR 131
8.3.1 Intra_4x4 prediction process for luma SAMPIESoiviiiiiiiiii s 132
8.3.1.1 Derivation process for INtradX4PredMOUEooveiiuieieeiii st 132
8.3.1.2 INtra_4x4 sample PrediCtion ..ot a e 134
8.3.2 Intra_8x8 prediction process for Iuma SAMPIEScvoiiiiiiiii s 137
8.3.2.1 Derivation process for INtra8X8PredMOUEccovviivieiiiiiiiiii st srae e 138
8.3.2.2 Intra_8X8 sample PrediClioncciiiiiiiii e 139
8.3.3 Intra_16x16 prediction process for Iuma SAMPIES...........ccoiiiiiieiiiec i 144
8.3.3.1 Specification of Intra_16x16_Vertical prediction MOUEccceeiieriiiieiiiieiereee e 145
8.3.3.2 Specification of Intra_16x16_Horizontal prediction MOdeccevvviieeiierie e 145
8.3.3.3 Specification of Intra_16x16_DC prediCtion MOGEcooueiiieiiiiiiiie e 145
8.3.3.4 Specification of Intra_16x16_Plane prediction MOdecoviiiiiiiiiiniiiiee e 146
8.34 Intra prediction process for chroma SAMPIEScocviiiiiiii s 146
8.3.4.1 Specification of Intra_Chroma_DC prediCtion MOE...........coeoiiiiiiiiiiiiiiiee e 147
8.3.4.2 Specification of Intra_Chroma_Horizontal prediction modeccccveeviiiiiiie e 149
8.3.4.3 Specification of Intra_Chroma_Vertical prediction MOdeccoooiiiiiiiiiiiieie e 149
8.3.4.4 Specification of Intra_Chroma_Plane prediction Modeccccevviiieiie i e 149
8.3.45 Intra prediction for chroma samples with ChromaArrayType equal t0 3........ccoooiiieiiiiiiiiieeee 149

8.3.5 Sample construction process for | PCM macroblOCKSccceiveiiiiiiiii e 150
B 1 (=Y o (=Yoo (o] o] o 1o=L Y RSSO SRPPR 151

8.4.1 Derivation process for motion vector components and reference indiCes..........ccocevvvrieninieiiniieiennnn 153

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices................ 154
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8........ 154
8.4.1.3 Derivation process for luma motion vector prediction ... 161
8.4.1.4 Derivation process for chroma mMotioN VECIOIScooueiiiiiiiiieeiie e 164
8.4.2 Decoding process for Inter prediction SAMPIES.........ooviiiiiiiiiiic e 165
8.4.21 Reference PiCtUre SEIECTION PrOCESScccviiiuieiieeiieiieeite e s e sre e te et estbe e te et e srbeeee e sreesreesneeeeee e 165
8.4.2.2 Fractional sample interpolation PrOCESSciiiiiiiiieiieniieie ettt 166
8.4.2.3 Weighted sample PrediCtion PrOCESSiiieerieeiieiieee e e se e e st e ste e e e snae e aeesreesneeanaeeeee e 172

8.4.3 Derivation process for prediction WEIGNTSoouiiiiiii e 173
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process 175

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks............cccoevvvviiiiiiiiciiennn, 176

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction

1110 L= PSPV P TR PPPT 176

8.5.3 Specification of transform decoding process for 8x8 luma residual blocks............cccoooiiiiiiiiiiiinnns 177

8.5.4 Specification of transform decoding process for chroma Samples............cooviiiiniiiiiciie s 178

Rec. ITU-T H.264 (08/2021)

8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal to 3..180

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling listS...........cccooevviiviiiiieniieeiieennn, 180
8.5.7 Inverse scanning process for 8x8 transform coefficients and scaling listS.........ccccovvriiiviiiiieinienennn, 181
8.5.8 Derivation process for chroma quantization Parameterscccueiiveereeieeiie e 182
8.5.9 Derivation process for SCaling fFUNCLIONSc.oiiiiiiiiiii e e 183
8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type ...184
8.5.11 Scaling and transformation process for chroma DC transform coefficients...........cccccvviriiiiinicienne. 185
8.5.11.1 Transformation process for chroma DC transform coeffiCientscccocveiiiiiiiiies 185
8.5.11.2 Scaling process for chroma DC transform coeffiCients...........cccceviviiiie i 185
8.5.12 Scaling and transformation process for residual 4X4 BIOCKScccooiiiiiiiiiiiii e 186
8.5.12.1 Scaling process for residual 4X4 DIOCKSccoveiiiiiiiiec e 187
8.5.12.2 Transformation process for residual 4X4 DIOCKScccooiiiiiiiiiiii e 187
8.5.13 Scaling and transformation process for residual 8X8 BIOCKScccoovvevveiiiiiiiniiesecce e 189
8.5.13.1 Scaling process for residual 8X8 DIOCKScceeiiiiiiiiiiciic e e 189
8.5.13.2 Transformation process for residual 8X8 DIOCKSccoiiiiiiiiiiiiiii e 189
8.5.14 Picture construction process prior to deblocking filter Processcccvevvvvvieiivenieesie e 192
8.5.15 Intra residual transform-bypass deCOding PrOCESSccveruiriiiiiriieiirieie e 193
8.6 Decoding process for P macroblocks in SP slices or SI macroblocks..........cccovviviiiiiiiiiiiiees 193
8.6.1 SP decoding process for NON-SWItChiNG PICTUIEScveiiiiiiiiieie st 194
8.6.1.1 Luma transform coefficient decoding PrOCESSuviiuiiiiiiiieie ettt 194
8.6.1.2 Chroma transform coefficient deCOdiNG PrOCESS.........eiveiiiiiiieiieiie it 195
8.6.2 SP and Sl slice decoding process for SWitChing PICIUIES.ueiiuiiiiiiiiiiie e 196
8.6.2.1 Luma transform coefficient deCOdiNg PrOCESSvviiuveriiriiei et 196
8.6.2.2 Chroma transform coefficient deCOdiNg PrOCESS.eoueriuiiiieiie ettt 197
8.7 DEDIOCKING FIILEE PrOCESS. ... eeiteiitieite ettt ettt ettt b e sh e st et e e she e sbe e e nb e e sbeesbeesbbeebeesbeenreeas 198
8.7.1 Filtering process fOr DIOCK BAQESocveiiiiiiiiiiee e e e ste e eaneeene e 202
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge............cccoooeireiiinee. 203
8.7.2.1 Derivation process for the luma content dependent boundary filtering strength............cccoccooeninnes 204
8.7.2.2 Derivation process for the thresholds for each block edge.........coovvviiiiiiiii e 206
8.7.2.3 Filtering process for edges with DS 1eSSthan 4...........coooiiiiiiiiiiii e 207
8.7.2.4 Filtering process for edges for bS equal t0 4cccvveiieiiii e 208

T e T T To o] ool OO R PP ORISR 209
9.1 Parsing process for EXp-GOIOMD COUESccuiiiiiiiiiie ittt sttt nee e 209
911 Mapping process for signed EXp-Golomb COUESoiiiiiieiieiie e 211
9.1.2 Mapping process for coded BIOCK PAttErN..........ooiiiiiiiii e 211
9.2 CAVLC parsing process for transform coefficient [BVEIScceoiviiiiiii i 214
9.2.1 Parsing process for total number of non-zero transform coefficient levels and number of trailing ones 214
9.2.2 Parsing process for 1evel INFOrMation...........c..ocviiiiiiiie e s e 218
0.2.2.1 Parsing process for 1eVEl_PrefiX........oo i 219
9.2.3 Parsing process for run informationcccvoceiiiiiie e 220
9.24 Combining level and run iNFOrMALIONcooiiiiiii e 223
9.3 CABAC parsing process fOr SICE Tata.............cccviiiiiiiiiiiie e 223
9.3.1 INIIAIIZALION PIOCESS. ... veeieeiriite ettt et s e e e et e s e e e e re e s st e e sbe e teesseeanbeenbeesseeanbeanbeenreenneeanes 225
9.3.11 Initialization process for CONteXt Variablesoouviiiiiiii e 225
9.3.1.2 Initialization process for the arithmetic decoding eNgiNe..........ccevveiieiierie e 248
9.3.2 BINANIZATION PrOCESS ...ttt ettt ettt bbbt b e bbbt eb e bbbt e bt e she e e bt e e bt e saeeabbeenbe e 248
9321 Unary (U) DINAriZation PIrOCESScoviitiiiiriiaiieite ittt sttt bbbttt nb e nbe e ne s 251
9.3.2.2 Truncated unary (TU) DIiNarization PrOCESSccveiiueeiieeiieiiesieesieesiesieesteesneesseeseeesreesneesneeeneeens 252
9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization process............ccoeeverereeriennnns 252
9.3.24 Fixed-length (FL) biNarization PrOCESSc.eecveiveiiueeiieeiie st eieesteeseesteeste e e e sneeeeeesreesneesnaeeeee e 253
9.3.25 Binarization process for macroblock type and sub-macroblock type ... 253
9.3.2.6 Binarization process for coded blOCK Pattern............ccveiieeiiiiie e 256
9.3.2.7 Binarization process for mb_gp_delta..........ooiiiiiiii 256
9.3.3 DECOUING PrOCESS FIOW ...ttt ettt e b ettt nee e 256
9.3.3.1 Derivation pProcess FOr CEXIAX........iiiiiiiiie ettt et e et s e e s raeesbeesree s 257
0.3.3.2 ATrIthmMEtiC dECOUING PIrOCESS.eiueetiiteeteiteeie ittt sb e sb e bbb bt sb e be e b sbeennesreas 270
9.34 Arithmetic encoding process (INFOrMALIVE)cc.viiieeiii i 277
9341 Initialization process for the arithmetic encoding engine (informative)coccooeiiiiniiinncnn, 277
9.3.4.2 Encoding process for a binary decision (informative)cccocoveiiieiieiie e 278
9.3.4.3 Renormalization process in the arithmetic encoding engine (informative)............ccccooveeviiiiinnnnne 279
9.3.4.4 Bypass encoding process for binary decisions (informative)c.ccccoeviveriiiiiiie e 281
9.3.45 Encoding process for a binary decision before termination (informative)...........cccccccooviviiiinnnne 282

Rec. ITU-T H.264 (08/2021) vii

9.3.4.6 Byte stuffing process (INFOrMatiVE).........couoiiiiiiiiieiiic s 284

ANNEX A — ProfileS QN0 TBVEIS.oiiiiii bbb bbbt b e re e 285
A1l Requirements on video decoder Capability..........ccoiiiiiiiiiiiiiiic s 285
A2 PIOTIIES e 285

A2 L BaSENG PrOTIlE ...ttt nh e eaae b 285
A2.1.1 Constrained Baseline Profile ... 286
A2.2 MAIN PIOTIIE. ..ottt b ettt b e bbb e bbb b 286
A2.3 EXIENAEA PrOTIIE ..o 286
YN S o [T o] (o) (-SSR 287
A2.4.1 Progressive High Profileooo et 287
A.2.4.2 Constrained High Profileoooiiiii i 288
A25 HIGN L0 PrOFIle .ot bbbt ettt nae e sabe b 288
A.25.1 Progressive High 10 Profile ..o s 288
YN T o [T I S0 o] (0] 1 RSSO 289
A2.7 High 4:4:4 PrediCtive Profile.........coo i 289
A28 High 10 INtra Profile......oece et ae e re e 289
A2.9 High 4:2:2 INra Profile. ..o bbb 290
A2.10 High 4:4:4 INtra Profile. ..o e ae e 291
A2.11 CAVLC 41414 INtra Profile......e ettt b e et 291
N T - Y VRSP UTR 291
A.3.1 Level limits common to the Baseline, Constrained Baseline, Main, and Extended profiles................... 292

A.3.2 Level limits common to the High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and

CAVLC 4:4:4 INTra PrOTIHIES ...ttt ettt ettt ettt sb e et a e b e sbeeseee s 294
A.3.3 Profile-SpecifiC IeVE] TIMITS........coviiiiiiiiie e 296
A.3.3.1 Level limits of the Baseline and Constrained Baseline profile..........cccccoviiiiiiiiiiniie i, 298

A.3.3.2 Level limits of the Main, High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and

CAVLC 4:4:4 INTra PrOFile.....oieee ettt 298

A.3.3.3 Level limits of the Extended profile...........cooiiiiiiiiiii s 299
A.3.4 Effect of level limits on frame rate (iNFOrMative)cccocviiiieiii e e 301
A.35 Effect of level limits on maximum DPB size in units of frames (informative)cccocooeniiiiennnn 304
ANNEX B — BYLE SErEamM FOMMALottt ettt et e et e et e e e st e e beesbeesteeenneenbeenneeas 307
B.1 Byte stream NAL unit Syntax and SEMANTICS......couviuiiiiiiriiiieiisiieie ettt 307
B.1.1 Byte Stream NAL UNIT SYNTAX.......eiitieiiiiiieitie ittt sttt ettt sbe e sbe e be e sbe e sbeesbaeebe e sanesabeennee e 307
B.1.2 Byte stream NAL UNIT SEMANTICScoveiviiiiiiiiiiiiiiericci ettt 307
B.2 Byte stream NAL UNit deCOAING PrOCESS.couviuiriiiriiriiitiertesiie sttt sttt bbbt sttt sttt e b e 308
B.3 Decoder byte-alignment recovery (INfOrMatiVe)cccoveiiiiiiiii e 308
Annex C — Hypothetical referenCe ECOUETiiiiiiee ettt e e ste e st e neesraesreeas 309
C.1 Operation of coded picture BUFFEr (CPB)c.coiiiiiiiiee sttt s e e steesreesneeenneenree s 313
C.1.1 Timing Of DItSTream arriVal..........cocuiiiiiiiii et 314
C.1.2 Timing of coded PICtUre reMOVAL..........cceeiiiiii i re e e e anes 315
C.2 Operation of the decoded picture DUFFEr (DPB)........ccuoiiiiiiiiieiieiiee ettt 315
c.21 Decoding of gaps in frame_num and storage of "non-existing" frames............ccccovevie i se e, 316
c.2.2 Picture decoding and OULPUL..........eoiuveieiiiiiie e e sie s te e e e e te e e e e s sbeete e sneesnaeenteeteesnaeaneeenee e 316
C.23 Removal of pictures from the DPB before possible insertion of the current pictureccocoeeenene. 317
C.2.4 Current decoded picture marking and StOFAQJEccvveverrirereereesie e e e e s e e e e e e nre e e e sneeanes 319
C.2.4.1 Marking and storage of a reference picture into the DPBcccooiiiiiiiiiic e 319
C.2.4.2 Storage of a non-reference picture iNto the DPBcccoiiiiiiiiiiie e 319

C.3 BItStream CONTOMMANCE.ciiiirtirteireee ettt r b nr e r e r e r e b nnennenns 320
C.4 DECOUET CONTOMMANCEeovitiitisteite ettt ettt b bbbt b bt bt e b bbb e b e bt bt nb e b e nrenenas 321
Cc4.1 Operation of the OUIPUL OFAEN DPBoiiiiiiiiiieitecie ettt nne s 322
C.4.2 Decoding of gaps in frame_num and storage of "non-existing" PiCtUreS..........ccccvvevieiieeieeviesne e 323
C.4.3 Lo (Tl [eToTo o [T o PSSP U SR 323
C.4.4 Removal of pictures from the DPB before possible insertion of the current picture...........c..ccccceveeneeee, 324
C.4.5 Current decoded picture Marking and SLOFAJEcoveerieriiiiiieniee sttt 325
C.4.5.1 Storage and marking of a reference decoded picture into the DPBcccccoovvivie i ennevie e, 325
C.4.5.2 Storage and marking of a non-reference decoded picture into the DPBcccceiiiiiiininiiecncene 326
C.4.5.3 "BUMPING" PrOCESS ... eveeieeiteeieeiteatee it st et sttt e sb et e b ke et e sb e e b e sb e e st e sbeebe e besbe e besbeesbesbeabeenbesbeenbenbeas 327

viii Rec. ITU-T H.264 (08/2021)

Annex D — Supplemental enhancement iNFOrMatioNnccuiiiiiiiiiii e 329

[20 R = o1 (o o I -V OO TPV P PP PR PR 329
D.1.1 General SEI MESSAPE SYNMIAXeiivieeiiee et et e sttt esie e e e et e st a e s e e e st e e e staeesbeeesnbeeasabeeasaeeanneeeaneeas 329
D.1.2 Buffering period SEI MESSAGE SYNTAXeiueiiirriiieitiiiie it riee sttt sttt sb bbb e b sbe e b seeesnenneas 333
D.1.3 Picture timing SEI MESSAGE SYNTAXeecveeirerrreeieesieeireaiteesseeseessseesseesseessseasseessessseassesssessssssssessessees 333
D.1.4 Pan-scan rectangle SEI MESSAgE SYNTAXccuiiiiieriiiieiiiniie sttt renreas 334
D.1.5 Filler payload SEI MESSAJE SYNTAX.......cueiuriireerieeririreesteeseeseesseesseesseesseeesseessessseeasseesseessessssesssessens 334
D.1.6 User data registered by Rec. ITU-T T.35 SEI MeSSage SYNTAX........cccuriviriuirniienieiiienieesiee e eeeeseee e 335
D.1.7 User data unregistered SEI MESSAGE SYNTAX.......ueueitiiiieriirieeiesieeiesteeie st siee st siee e sre e e sbesseesbesieennesreas 335
D.1.8 Recovery point SEI MESSAgE SYNTAX.......ccuiiiiiiiiiiiiieaie ettt sabe e 335
D.1.9 Decoded reference picture marking repetition SEI message SYNaXccccverereerieneeiienesieeneseenieniens 335
D.1.10 Spare PiCture SEI MESSAPE SYNTAX.......cceiieeireeireesteesireesteesteeseesiseesseesteesssessseessessssessseessesseessseessessens 336
D.1.11 Scene information SEI MESSAQE SYNTAXciuiiiuiiitiiiiieaiiestee sttt e ste et eesteestee e e sbeeseeesraeeeeesbeeaneeas 336
D.1.12 Sub-sequence information SEI MeSSage SYNAX........cciuriiuiereiiieeiieeseeseesreesteesteeseeesseesreesneeseeesseessees 337
D.1.13 Sub-sequence layer characteristics SEI MESSAGE SYNTAXccverriveriiiiieiieesiieestiesiee st sieesiee e seeeseeeas 337
D.1.14 Sub-sequence characteristics SEI MESSAgE SYNTAXcuirierieriiiieierieeie st eiee ettt e e nresreas 337
D.1.15 Full-frame freeze SEI MESSAGE SYNTAXc.vvieiiiiiiiiieiiiee it e sie e e st e sttt e st e st e e st e s sav e e aabeesbaeeanreeenneeas 338
D.1.16 Full-frame freeze release SEI MESSAJE SYNEAX.....cviiiiieiiiieiieiieie ettt nee s 338
D.1.17 Full-frame snapshot SEI MESSAGE SYNTAXecveeiveeiieriererieesieesieesteesteeseesseesseesseessseesseesseesnssssssssesssnes 338
D.1.18 Progressive refinement segment start SEI Message SYNtaXcccovviiiiiiiieieiiee e 338
D.1.19 Progressive refinement segment end SEI MESSAPE SYNTAX ...vvvvvvvivrerieeiersieeesieeseeseeesteesteesneseeessaessees 338
D.1.20 Motion-constrained slice group set SEI MeSSage SYNTAaX........coviiuiiiiiiiiiiieiie e 338
D.1.21 Film grain characteristics SEI MeSSAgE SYNTAXc.veiviiiriiirieeieitieie sttt seeas 339
D.1.22 Deblocking filter display preference SEI message SYNaXc.cooeiiiiieriiiiiienie e 339
D.1.23 Stereo video information SEI MESSAgE SYNTAX........ciuiiieiiiiriiiiieiesieeie st neeas 340
D.1.24 Post-filter int SEI MESSAGE SYNTAXccueiiriirieireeiteesieasteesteeseesireesteesteesssessseesseesssessseesseesseesssesssesssens 340
D.1.25 Tone mapping information SEI MESSAgE SYNTAX........eciueiriiieiiiiieieitieie sttt neeas 341
D.1.26 Frame packing arrangement SEI MESSAgE SYNTAXccveiiuieieriieeiiriesieeseeseeesteesteesseessseesseesnesseeesseessnens 342
D.1.27 Display orientation SEI MESSAgE SYNEAX......ccutiiuiirieiiiiaiieiteesiee e steesieeseeesbeesteeseeesbeesbeeseeesbeesbeeseeeas 342
D.1.28 Green metadata SEI MESSAGE SYNTAXc.viieeiirtirieiteiieeieateeitesteeseestesteesbesteeseesteeaesbeeseesbesteesresteesaeseeas 342
D.1.29 Mastering display colour volume SEI MEeSSage SYNTAXcccueiveiivieiieeiiesieesteesteesreesteesreesneseeesreesrneas 343
D.1.30 Colour remapping information SEI MESSage SYNTAXc.ueiueriiiieiiriiiie ettt seeas 344
D.1.31 Content light level information SEI MeSSAge SYNIAXccceeiiiiiiiieieesieesieeesieesieeseeesieesteesneseeesreeseeens 345
D.1.32 Alternative transfer characteristics SEI Message SYNaXcovveiiiiiiieiiiieieiee e 345
D.1.33 Content colour volumMe SEI MESSAJE SYNTAX........cciviiireiieeseisieeiteesieeseesseesteesseesseessseesreesaessseessaessens 345
D.1.34 Ambient viewing environment SEI MESSAgE SYNEAXeveeruerrieraiiaiieeaieeaeeesteesteesieeesteesreeseeeaeeeseeeseeens 345
D.1.35 Syntax of omnidirectional video SPecific SEI MESSAGESccveiieiiiiiiiiiiiie st 346

D.1.35.1 Equirectangular projection SEI MESSAgE SYNTAXueruvervierteirieeriiaiteesieeseeasteesieesieesreesbeeseeesine s 346
D.1.35.2 Cubemap projection SEI MeSSAgE SYNTAXiiiiiiriirieieiieeie st sie sttt ettt sr e 346
D.1.35.3 Sphere rotation SEI MESSAPE SYNTAX........cciuiiiuieiieiieiieeiteesteeseeesteesteeseesseasteesseessesseessesssessssesnees 346
D.1.35.4 Region-wise packing SEI MeSSAgE SYNTAX........ccueiuiriiriiieiieesiieeieesieesiee et sie e e bbb e snee s 347
D.1.35.5 Omnidirectional viewport SEI MeSSage SYNTAXc.cciveeiueereiiiieiieeesieeseesiessieeseeseeseessreeseesnesnes 348
D.1.36 SEI Manifest SEI MESSAQJE SYNTAXeoiueiiieiiiiiiiiertee et asteesteesieeaeeesbeesteesseeesbeesbeesseeanbeesbeeseeesseeanbeesseeas 348
D.1.37 SEI prefix indication SEI MeSSAgE SYNTAXvveveiiieiiieiiieeseisiee e esieeseesaeesteesseesneeesaeesseesrnessseesseessens 348
D.1.38 Annotated regions SEI MESSA0E SYNTAXciuriiiirieiieieiitreeiireesteesstte e st e e steeessaaeesateeansbeesnraeeanneeesneees 349
D.1.39 Shutter interval information SEI MeSSage SYNTAXccveiiiiiiiiiiiiieiie e 350
D.1.40 ReServed SEI MESSAJE SYNTAX....ciuiiiueerreeieesreeiteesteesseasteesseeseeasseasseessesasseessesssessssasseesseesssssssesssesssees 350

D.2 SEI Payload SEMANTICS.c.uieiiiiiieiiietie ittt ettt sttt h e h bttt e bt e eh b e eh b e e bt e sheeeabe e beesbeeeebeenbe e 350
D.2.1 General SEI payload SEMANTICS.........civiiiiiieieitieie ittt sttt ettt sb e sbesbe e b steenre b 350
D.2.2 Buffering period SEI MesSage SEMANTICSoiiuiiiiiriiiiieeiie sttt 351
D.2.3 Picture timing SEI MeSSAge SEMANTICScciviriiiiiitiiieie ettt nenne s 351
D.2.4 Pan-scan rectangle SEI MeSSage SEMANTICSc.vciviiieiieeieeiresiteesieeseesre e e steesiresnreeteesreesanesneeeseee e 356
D.2.5 Filler payload SEI MeSSAge SEMANTICS.ciuuiiriiiiaitieiieeetiestee et aeeesteesteesseeesbeesteesseeasbeesbeesreeeneeeseeesneeas 357
D.2.6 User data registered by Rec. ITU-T T.35 SEI message SEMANLICScevvvverreereesiveeiieesieesinessveeseeesenens 357
D.2.7 User data unregistered SEI MeSSage SEMANTICScoiviiuieieiiiiiiieitie sttt see e sbe e n e eeesbeesiee s 357
D.2.8 Recovery point SEl MESSAgE SEMANTICSeeviiiiieitiiie ettt stee ettt e sbe et e e b et e sbeseeenneseeas 358
D.2.9 Decoded reference picture marking repetition SEI message SEMAaNtiCScovevveriveeiieeseesinesiveeseesnens 360
D.2.10 Spare picture SEI MeSSAge SEMANTICS.couiiiiiiieitiiieie ettt sbe e bbb seeenenneas 360
D.2.11 Scene information SEI MeSSage SEMANTICS.ccviiuriirieiieseesieeeiteesteeseesreesteesreesreeesteesreesraeeseeesreesseens 362
D.2.12 Sub-sequence information SEI mMeSSage SEMANTICS.c.viiriiiieiiiieie e 363
D.2.13 Sub-sequence layer characteristics SEI Mmessage SEMANTICSvvvvvverieeieeiiieeieeseesieeseesteesneseeeseeeseees 365
D.2.14 Sub-sequence characteristics SEI MeSSage SEMANTICS........cieiiiiiiiiriieiie et niee et sbee e 366
D.2.15 Full-frame freeze SEI MeSSAge SEMANTICScoeeiiriiiieiiiiiie sttt ieenresne s 367

Rec. ITU-T H.264 (08/2021) IX

D.2.16 Full-frame freeze release SEI MeSSage SEMANTICS.......cuiiviiiiiiiiiie it 367

D.2.17 Full-frame snapshot SEI MeSSAge SEMANTICSveeivvriivririeeseesieesieesteeseessreesteesreesneesteesreesneeseeesseesseeas 367
D.2.18 Progressive refinement segment start SEI message SemantiCscoooveieiiiriiiieieieeic e 368
D.2.19 Progressive refinement segment end SEI message SEMANTICSo.vvevveeieeriieerieereesineeseestee e sseeeseeeseees 368
D.2.20 Motion-constrained slice group set SEI message SEMANTICSc.coveeieriiiiiiieiie e 368
D.2.21 Film grain characteristics SEl MeSSage SEMANTICSciveiiriiiiieiiitieie sttt 369
D.2.22 Deblocking filter display preference SEI message SEMAaNtiCScccuevveriieiieneeniiieiie e 375
D.2.23 Stereo video information SEI Message SEMaNTiCS........c.oiviiiriiiiaiiiiieie e 377
D.2.24 Post-filter hint SEI MESSAgE SEMANTICS........cciviiiviiiiiiieiiteeseesieeteesteesteesre et e e sre e s e e e steesreesrnesreeeseeesreens 378
D.2.25 Tone mapping information SEI MesSage SEMANTICS.eeieiiiiiiieiie st steesiee et seee s 379
D.2.26 Frame packing arrangement SEI message SEMANTICSc.veivriiueriveerieseesireesteesreeseeesteesteesneseeeseeessnes 383
D.2.27 Display orientation SEI MeSsSage SEMANTICSccieiiiiiiieiiiiieeieesiee s see et esbe e e sreesaeesnesbeesbeeseeeas 394
D.2.28 Green metadata SEI MeSSAgE SEMANTICScviiriiieriiieeiteriee ettt sttt sb et sbesbeenre b 395
D.2.29 Mastering display colour volume SEI message SEMAaNTICSc.ccivveiueeiieeiiieeiieeseesneesieesreesnesreeesreesenens 396
D.2.30 Colour remapping information SEI Message SEMANTICS........coveiieiiiiiiierieree et 397
D.2.31 Content light level information SEI message SEMANTICSccvvvivveieeiieriieeieesee e ste e neseeesree e 399
D.2.32 Alternative transfer characteristics SEI message SemMantiCs.........cocoviiiiiiiiiiienieie e 400
D.2.33 Content colour volume SEI MeSSage SEMANTICS.civriiueereiririieesieeseesieesteesseeseeesseesseesraesseeesseessees 400
D.2.34 Ambient viewing environment SEI MesSage SEMANTICS........coiuiiuiirerieiiieeniiesiee et e e see e seee e 402
D.2.35 Semantics of omnidirectional video Specific SEI MESSAJESccovviiiiiiiiiieie e 403
D.2.35.1 Equirectangular projection SEI Message SEMANTICScorurruriiiiniieieenie e e e re e 403
D.2.35.2 Cubemap projection SEI message SEMANTICS..........ciiiieriireeieiieie sttt 404
D.2.35.3 Sphere rotation SEI MeSSaAge SEMANTICSecivieiureiieeiiieiteesteesieesteesteeseesreesteesreesaeabeesreesreesneeannas 405
D.2.35.4 Region-wise packing SEI Message SEBMANTICScccouiiiuieiiiiieiiiesiee ettt 405
D.2.35.5 Omnidirectional viewport SEI message SEMANTICSvcvvererrierrieereeseeseeseesee e see e e see s 410
D.2.35.6 Sample 10cation remMapPiNg PrOCESSceiuuiauieiteeiteeaiieateesteeseeeteesteesbeessbeasbeesbeesreeanbeenbeesbeesneeannas 411
D.2.36 SEI manifest SEI MESSAJE SEMANTICSc..iiiiiiriiiie ittt te e e sneas 416
D.2.37 SEI prefix indication SEI MeSSage SEMANTICSccuiiiviiiieeieiiiieiireesieesteesreesteesreeseeesseesreesnesseeesseessnens 417
D.2.38 Annotated regions SEI MeSSage SEMANTICSeeivirtiiieriiriieie ettt ettt nre e 418
D.2.39 Shutter interval information SEI Message SEMANTICSccvriiviiivieieesieesieeseeseesreesteesreesneseeesreesrees 420
D.2.40 Reserved SEI MeSSagE SEMANTICS..........iiuiiieiirtiaieitiaieenteetee sttt sb et e bbb bt besbe e e e sreabeenbesbeennenreas 421
AnNnex E — Video usability iNfOrMAtioN..........ccuoiiiiiiiiiiei st e et e e e e b e e sbeestaeesbeesbaesreens 422
E.L WU SYNEX ittt etk bbb h bbbt b bbb e R £ e £ b £ R Rt bbbt et bt bbb b e 422
E.1l.1 VUT PATaMELEIS SYNTAXeeiuvieeiiieesiieeietieestiee st e e ssteeestaeeastaeessteeessteeesseeeessaeeasseaesraeeesseeeesnseesnseennneeennes 422
E.1.2 HRD PAraAMELEIS SYNMEAX .. .eeeieiieiiteitieeaitee ettt ettt et e e e be e et e e e skb e e e ab b e e et b e e aabeeeasbeeeabbeeabeeeebeeeasbneennbeaeas 423
A A L T 1 T oSO 424
E.2.1 VUL Parameters SEMANTICSuvvivieiteeieeireeieese e st e ete e teese e s e s beesteesseeabe e teessseasbeeteesseessseanteesreesneeanres 424
E.2.2 HRD PArameters SEMANTICSeevieiteeiteeatieitie sttt e et e eteesteesteeesteesbeesbee e bt e sbeesbaeasbeesbeesbeeabaeebeesaeeaneeennee e 439
ANNEX F — DEPIECALEM ...ttt ettt b ettt b ekt h et bt e be e bt e oAbt ekt e b et e hb e e bt e ebe e ebb e et e e nbeeabeeenbeenbeenbeeas 442
ANNeX G — Scalable VIAE0 COUINGoiiiii et e e st e e s b e e baesbeesteeeeeesbaesreeas 443
L0 R S olo] o T T T USSP UPP TP 443
L \\ (o] 1 ¢)Yl =] (1 =) (0L OO 443
LT T B =) 1431 443
L A AN o] o1 (A VAT £ 0 TS URR TR 447
TR I 0101V =T0 1T] L T T T TP TP VPP PPPRT 447
G.6 Source, coded, decoded and output data formats, scanning processes, neighbouring and reference layer
=] T g OSSPSR 447
G.6.1 Derivation process for reference layer macroblOCKScooiiiiiiiiiiiiiii e 447
G.6.1.1 Field-to-frame reference layer macroblock CONVErSioN PrOCESSccviiveivireerierieeiesiesee e e 449
G.6.1.2 Frame-to-field reference layer macroblock CONVErsion ProCeSSccicuveriieiieiieiiieesie e 449
G.6.2 Derivation process for reference layer Partitionsccooiviiiiniiiiiie e 449
G.6.3 Derivation process for reference layer sample locations in resampling.........cccccocvvevieiiiiiieiceeccee e, 450
G.6.4 SVC derivation process for macroblock and sub-macroblock partition indices............cccocoviieenirnnnne. 452
G.7 SYNLAX ANA SEMANTICSuveeveesieeeieesieesiee et et estee e e e e teesteesteeaseeesteesteeaseeesbeesteeeseeasseesbeeaseeesseenteessenanaeenseensenas 452
G.7.1 Method of specifying syntax in tabular form...........ccccoi i 452
G.7.2 Specification of syntax functions, categories, and deSCriptorscevviririirieniieniniese e 453
G.7.3 SYNtaX in tabUIAT TOIMMccveieec e e e e et e e s e e e b e e te e reesneeaneas 453
G.7.3. 1 INAL UNMIE SYNEAX ..ttt ittt sttt bbbttt sb et b bt e bt bt e b e eb e e b e nb e et e e b e sbe e b nbeas 453
G.7.3.2 Raw byte sequence payloads and RBSP trailing bits SyntaXcccoevvvveiiiiiiive e 453
G.7.3.3 SHICE NEAUERT SYNTAXtiiiieiieieiie ettt ettt e e e sttt e e bt e sab e e mbe e nbe e saeeenbeenbee e 455
G.7.3.4 SHCE GALA SYNEAX....eirtiiteetieiteeiee ittt sb et bbbt sb e bt s bt b e e b e skt et e nb e e st e nb e et e e nbesbeebenbeas 458

X Rec. ITU-T H.264 (08/2021)

G.7.3.5 MaCrODIOCK TAYEE SYNMTAX......ccuviitiiiiiiteitieie sttt sttt sb e sb bbb bbbt nb et e e b sbe e et 459

G.7.3.6 Macroblock layer in scalable eXtENSION SYNTAX.......ccueervieiieiieiieeieesresie e e seeesrre e e saee e e ee e 460
L S T 01T 10 ot ST ROPTR 463
G.7.4.1 NAL UNIT SEBMANTICS ...cvirerriresreieieeiese sttt anennenn 464
G.7.4.2 Raw byte sequence payloads and RBSP trailing bits Semantics.............cccoeoiiiiiiiiiiciicne e 472
G.7.4.3 SliCe NEAdEr SEMANTICS iiiiieieiieiee i e sttt e e et e s e e et esrt e st e e nte e saeesneeeneeesseesneeaneeeneee e 477
G.7.4.4 SIICE dAA SEMANTICS. .. .veeuviireiiieire ettt ettt nr e e nr et e ar et enresreenenreas 491
G.7.4.5 MacroblocK 1aYer SEMANTICSeceiitiiieieitiei ittt bbbt sbeene e 491
G.7.4.6 Macroblock layer in scalable eXtension SEMANTICScccveiveiiieiieiie e 492
G.8 SV UECOUING PrOCESS. .. veeuveeiireiureeiteesteesteesteesteeasseesteesteeateeasteasteeateeasseateesseeaseeasteesteeateeaseeenteesreeaseeateenreeas 495
G.8.1 SVC initialization and deCOTING PrOCESSES.....cuiruiirirtiriretiriietesieeie sttt be st be bbb 496
G.8.1.1 Derivation process for the set of layer representations required for decodingccccccevveiieennnne, 496
G.8.1.2 Array assignment, initialization, and reStruCturing ProCESSEScererrueerueereerieaieesiee e eneeeeeenes 496
G.8.1.3 Layer representation deCOAING PrOCESSESecivreiureiueerieerieesreaieesteessressseeseesseesseeseeesseesseessseesseees 499
G.8.1.4 SIiCE JECOUING PrOCESSESuveeureeuteetieriee et etee st e sttt e bt eshe e e sbe e ke e sbeeeabeesbe e sbe e sbbeembeebeesbeeasbeenbee e 502
G.8.1.5 Macroblock initialization and deCOdiNg PrOCESSES........ueviririirierieerieeee ettt 503
G.8.2 SVC reference picture lists construction and decoded reference picture marking process..................... 514
G.8.2.1 SVC decoding process for piCture Order COUNTccueiveieeiieiecie sttt 516
G.8.2.2 SVC decoding process for PICtUre NUMDETS.cciuveieeiieiie et 517
G.8.2.3 SVC decoding process for reference picture lists CONStrUCLIONccocveiiiiiiiiiee e 517
G.8.2.4 SVC decoded reference picture Marking PrOCESSccveiveiiririeeieeieesieesteeseesree e e e e e snaeeneee e 519
G.8.25 SVC decoding process for gaps in frame _NUML........c.oooeiiiiiiiiie e 524
G.8.3 SVC iNtra deCOUING PrOCESSES.eiueeterueerterteastesteeste bt aite bt sttt e sttt es e be e s et es b et sbe et e bt enbesbeenbe st e 525
G.8.3.1 SVC derivation process for intra prediCtion MOUESccvuiiiieiiiiie e 525
G.8.3.2 SVC intra sample prediction and CONSEIUCTION PrOCESSeeverieeieeiierieeiinieeiesreeee e siee e 528
G.8.4 SVC INtEr PrediCliON PrOCESSvveivviereerieiteeieeareesteesteeasaeasteesseesteeaseasteestsessseateesseesseesseesseessessseesnees 534
G.8.4.1 SVC derivation process for motion vector components and reference indicesc.ccocevvvviverennns 534
G.8.4.2 SVC decoding process for Inter prediction SAMPIESc.cocveiieiiieiie i 540
G.8.5 SVC transform coefficient decoding and sample array CONStruction ProCESSESceveervearueerieereeannes 545
G.8.5.1 Transform coefficient scaling and refineMENt ProCESS........ceeiviiiiiieiiiiee e 546
G.8.5.2 Transform coefficient level scaling process prior to transform coefficient refinement..................... 553
G.8.5.3 Residual construction and aCCUMUIALION PrOCESS........ccviiiiiiieiieie it 554
G.8.5.4 Sample array aCCUMUIALION PrOCESScivveiieeieeiiiesieeie e esre e e ste e st e srbeeteesneesnaeeteesreesneesneeeeee e 558
G.8.5.5 Sample array re-initialization PrOCESScceeviiiiiiiiiieie et seeas 561
G.8.6 Resampling processes for prediction data, intra samples, and residual samples...........cccoocvevverivernnnnn. 561
G.8.6.1 Derivation process for inter-layer predictors for macroblock type, sub-macroblock type, reference
INAICES, ANA MOTION VECIOIS.cciiuveeee e it e e ettt e e ettt e e e et e e e s ettt e e e e e rbb e e e e e sabbaeeessabbeeeessabbeeeessreeeeas 561
G.8.6.2 Resampling process fOr iNtra SAMPIESc.coiiiiiiiiiiie et 570
G.8.6.3 Resampling process for residual SAMPIES ..o 582
G.8.7 SVC debloCKIiNG fIltEr PrOCESSESvviivvieiieitie i ettt e sttt rte et e st e et e s e e e e te e sre e s e e e be e reesneaaneas 589
G.8.7.1 Deblocking filter process for Intra_Base prediCtionccccoeeiiiiiiiieeiie e 589
G.8.7.2 Deblocking filter process for target repreSEntations..........c.cccveeeeieerieiie e 589
G.8.7.3 Derivation process for quantization parameters used in the deblocking filter process..................... 590
G.8.7.4 Macroblock deblocking Filter PrOCESScvveiieiieiie e ne e 591
G.8.8 Specification Of DItSIream SUDSELSooviiiie e 600
G.8.8.1 Sub-DitStream eXtraCtion PrOCESScoiiiiiiiiieiieiee ettt bbb sbe e b 601
G.8.8.2 Specification of the base layer DItStreamc.cociiii i 601
G.O PAISING PIOCESS. .. cutetteteuttetee ettt et ettt ate e e bt e abeeabeeesb e e bt ekt e ehe e o s bt e b e e eb et e A bt e bt e ket e ab e e bt e ekt e e he e e bt e ebeeebeeenneenbeenbee s 602
G.9.1 Alternative parsing process for coded bIOCK Patterncocoiirieiiiiiiniiese e 602
G.9.2 Alternative CAVLC parsing process for transform coefficient [eVels ..., 603
G.9.2.1 Additional parsing process for total number of non-zero transform coefficient levels and number of
LU= VLT T TSP 603
G.9.2.2 Alternative parsing process for run informationccccooiiieiiiic i 606
G.9.3 Alternative CABAC parsing process for slice data in scalable eXtension...........ccccevvvievieineerivesneane. 607
G.9.3.1 INILIAHZALION PIOCESS. ... eeeuteeieeiiteate et ettt ettt et be e a e be bt e et e a bt et e e sbe e sabeembe e nbeenbeeanbeente e 607
G.0.3.2 BINAIIZALION PIOCESS ... veeueeiteereeiteeteeiteatees st et esbeete et e ebe et e sbe e st e sbeeseesbeebe et e sbe e besbeeseesbeabeenbesbeenesteas 608
G RCTC T B - Totoe [Ta o [l o] foTer=ioioih i [0 SR SR 608
G.10 ProfileS And TBVEISoiiiiiieieie e bbbt 610
L0 0T R = (1 SRR 610
G.10.1.1 Scalable Baseline Profileooiiiiiiiieee bbb 610
G.10.1.2 Scalable High Profile ... bbbt 613
G.10.1.3 Scalable High INtra profile..........cooeoiiii e 615

Rec. ITU-T H.264 (08/2021) Xi

GLL0.2 L BVBIS. ittt ettt et e e ——teeeee e e e e ——————taeeeeee e e e e —————trrreeeeera i ——————es 615

G.10.2.1 Level limits common to Scalable Baseline, Scalable Constrained Baseline, Scalable High, Scalable

Constrained High, and Scalable High Intra profiles............ccoooiiiiiiiiiiiice e 616
G.10.2.2 Profile Specific IeVEl IMILSccviiiieiicie et ee e 618
(TR R 2 1 (7= (T 0] 1o | SO RPR 620
G.12 Hypothetical referenNCE UECOUEYeiiiiiiieti ettt b ettt b e sbe e s be e b e e nbeestee s 620
G.13 Supplemental enhancement INFOrMAtIONcouiiiiiiii et 620
LT TR R o1V [0 Vo 1)] 7 BTSRRI 620
G.13.1.1 Scalability information SEI MESSAgE SYNTAX......ccuueiueateeriieiieaieesieesieeaieeteesteeseeeanbeeseeeseeeeneeeeee e 621
G.13.1.2 Sub-picture scalable layer SEI MESSAgE SYNTAXciviiieriiiiiiieiiicie sttt 623
G.13.1.3 Non-required layer representation SEI MeSSAgE SYNTAXcvuvriueerieerieiieaieesieesiie e siee e eee e 624
G.13.1.4 Priority layer information SEI MeSSage SYNTAX........coeiviriiiieiiiiiiie it 624
G.13.1.5 Layers not present SEI MeSSAgE SYNTAX......cuiiiririiiiiiiieeiiiiie ettt e s siree e e e e s siree e e sbbeee e s sireee s 624
G.13.1.6 Layer dependency change SEI MESSAgE SYNTAXcueiueriiriiriieeiieesiieaie et eseeeseee e eseee e e e 624
G.13.1.7 Scalable nesting SEI MESSAGE SYNTAX ...eiuveiurerireiieiieeieesiresteeieesseesssessseateesseesseeasseesseesssessseesseees 625
G.13.1.8 Base layer temporal HRD SEI MESSAGE SYNEAX ...eeiuvieveeiieriieiieeieesiiesiieeieesieesiresne e seee e e 625
G.13.1.9 Quality layer integrity check SEI MeSSage SYNTAXccveiveeiieiieeiee e sieesieeseesnee e e e e saee e eneee e 626
G.13.1.10 Redundant picture property SEI MESSAJE SYNTAX.......ccruerruiriieiieeiiie et eieesiee e sre e seee e e ee e 626
G.13.1.11 Temporal level zero dependency representation index SEI message SyntaX........ccooceveveeerervernennens 626
G.13.1.12 Temporal level switching point SEI MESSAgE SYNTAXccivveireiiueeiierieiieeiteesieesve e sreesrre e eeee s 627
G.13.2 SEI PAYI0AA SEMANTICSeveiiiiitiiiieitesie ettt etttk b e bttt e bt e bbb 627
G.13.2.1 Scalability information SEI Message SEMANTICSccccveiveiiririeeireiie e e e see e eeesreesree e nee e 629
G.13.2.2 Sub-picture scalable layer SEI message SEMANTICSccoviiurriueeiieiie et 643
G.13.2.3 Non-required layer representation SEI message SEMAaNtiCS.........cccvvviiriieiiiiinieneeie e 644
G.13.2.4 Priority layer information SEI Message SEMANTICScoueiuiiuiaiieiieiie e 645
G.13.2.5 Layers not present SEI Message SEMaNTICS.......couiiiiiiiiiiiieie ettt 645
G.13.2.6 Layer dependency change SEI Message SEMANTICSceeiviiieiieeieeiresieesie e st e srre e sreesree e eee e 645
G.13.2.7 Scalable nesting SEI Message SEMAaNTICSccuoiiiiiiiiieieiie et 647
G.13.2.8 Base layer temporal HRD SEI MeSSage SEMANTICSccveevieireiieeiieeiiesieeieesneesnveseeeseeesnnesnneeseeeses 648
G.13.2.9 Quality layer integrity check SEI message SEMANTICS.........coviiuieiieiie e 649
G.13.2.10 Redundant picture property SEI message SEMANTICS.......cviiiiieiiiiieiiiie e siee et 649
G.13.2.11 Temporal level zero dependency representation index SEI message sSemanticscccocveeeveennnne, 650
G.13.2.12 Temporal level switching point SEI MesSage SEMANTICScc.eiiiieririerierieie e 652
G.14 Video usability iNfOrMELION........cviiiiiieie e e et e st e s e e teesteesraeeaeenteenree s 653
G.14.1 SVC VUI parameters eXtENSION SYNTAXciuiruieiuierieriieenieesieesieeseeasteesieesieesbeesieesseessbeasaeeseeessnesnnes 653
G.14.2 SVC VUI parameters eXtenSion SEMANTICSciueiviiiiiiriiriieiesie ettt st 653
ANNEX H — MUIIVIEW VIAEO COUING ...ttt bbb bbbttt 656
1 S Tol o o TPV RUPP TR RPPPPR 656
H.2 NOIMALIVE FETEIENCES ...ttt ettt ettt et st et s bt et et e enbesbeene et ens 656
[TR T B) 1311] o TSSO PP PP 656
[IO AN o] o) (1Y F=1 (o] TR 658
H.S CONVENTIONS ..ottt 658
H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships......... 659
H.7 SYNEaX QN0 SEIMANTICS .. .veivreiieiie et ieestie e ste et e st e te et e st e st e e teesaeesneeesteesteeaaeeesbeesseesneeaneeesseesneesneeaneeeses 659
H.7.1 Method of specifying syntax in tabular FOrM............cooiiiiiiiiii e 659
H.7.2 Specification of syntax functions, categories, and deSCriPtOrsccceiievrieeiresieesie e 659
H.7.3 Syntax in tabular FOrM ...ttt b e b siee s 659
H.7.3.1 INAL UNIE SYNEAX c1eeitieitieeite sttt sttt s e te et na e et e e nteeste e s neeenteenteennaeanseenteesreenneeanns 659
H.7.3.2 Raw byte sequence payloads and RBSP trailing bitS SYNtaXcccovveriiiiiiieinieniicnec e 659
H.7.3.3 SHCE NEAGRT SYNEAX ... tieitiitieiie ittt bbbttt st s e bt e b s be e e e 661
[A 1ol o P L -) V1 GRS PR 662
H.7.3.5 MAaCrobIOCK TAYEI SYNTAX......c.viitiiieitiiiieite sttt ettt nb e bt 662
H.7.4 SBIMANTICS 1.ttt ittt sttt sttt b et b et bk e b e e b e e s e sb e e b e e b e e be e b e e bt et e ebeer e e nbeaEeenbeereentenre s 663
H.7.4.1 NAL UNIE SBMANTICS ...ttt ittt sttt sttt sttt et et e s e e beenbe e ste e et e e nbeenreenneeaneas 663
H.7.4.2 Raw byte sequence payloads and RBSP trailing bits SemMantiCS..........c.cccvvvevveiiiiiesiecnecre e 670
H.7.4.3 SHICE NEAURK SEMANTICS.ieitie ittt ettt ettt sttt b et ettt et et b e e nbe e be e e nbeenbeesbeesnreennas 674
H.7.4.4 SHCE data SEMANTICS.eiiuieitieieieeiee e st sttt se e e teeste e st e et e e nteesteesseeenteenseenreeanseenbeenreenneeanes 676
H.7.4.5 MacrobloCk 1ayer SEBMANTICScueiiuiiiuiiiii ittt e e b et 676
H.8 MV C ECOUING PIrOCESSveertieiieaittetie ettt ebe et e et be et e bt e bt es b e e sbe e eheeeh e e bt e ebe e ehbeanbe e ebe e embeasbeeebeesbbesnbeenbee e 677
H.8.1 MVC decoding process for PiCture Order COUNT.........ccvviiuiereiiieesiee e seeseeeseeste e s e steesre e e e eeesreenrees 677
H.8.2 MVC decoding process for reference picture lists CONSIIUCTIONcccuiiiiiiiiiiiiiiieere e 678
Xii Rec. ITU-T H.264 (08/2021)

H.8.2.1 Initialization process for reference picture list for inter-view prediction references............ccce...... 679

H.8.2.2 Modification process for reference PiCtUre listS.........covevveiiiiiiiii s 679
H.8.3 MVC decoded reference picture marking PrOCESScoiiieiiiiieieiieierie et 682
H.8.4 MVC inter prediction and inter-view prediCtion PrOCESSccvviveereeiiersieeeiteeseeseeeseesteesneseeesraessees 682

H.8.4.1 Additional processing for an inter-view prediction referencecccooeviiiiiiiniiiesee e, 682
H.8.5 Specification of DItStream SUDSELSco.iiiiiiiiiie e 686

H.8.5.1 Derivation process for required anchor VIiew COMPONENTScooviiieereriiiiiienee e 686

H.8.5.2 Derivation process for required non-anchor VIew COMPONENTScccververieiienienienenienie e 687

H.8.5.3 Sub-bitstream eXtraCtion PrOCESSccveiiviiiieeiiesiee st et e steese e st e steeste e s e e e steeste e s e e srbeanbeesteesnresneas 687

H.8.5.4 Specification of the base View DItSTreamccooiiiiiii e 689

H.8.5.5 Creation of a base view during sub-bitstream extraction (informative)............c.cccoecvvivivinrivnsinnennn. 689
H.8.6 MFC enhanced resolution piCture reCONSLIUCTIONccuieiiiiiiiiieitie ettt 690

[TR = T [o T o 0 Lot TSRO SR 694
H. 10 ProfileS @nd IEVEISccviiiie ettt sttt e sn e e s e e st e snaean e e teesneeanaeeneee e 694
H.L0.1 PIOFIIES o bbbt b e bbbt R ettt b et b bt r e n e 694

H.10.1.1 Multiview High Profile........coooiii e e 694

H.10.1.2 Stere0 High Profilecoe ottt e e e nre et e e 695

H.10.1.3 MFC High Profile.....c..ooiiiii e 696
H.L0.2 LBVEIS. ..ot 696

H.10.2.1 Level limits common to Multiview High, Stereo High, and MFC High profiles.............cccooenine. 697

H.10.2.2 Profile SPecific 1eVEl HMITScccoviiiiiiie e e 699

T T 2 Y (=T =T U (0] T | RS 699
H.12 MVC hypothetical referenCe QECOUBTccuiiiieiie et be et e e s e e be e sbeesraeesaee e 700
H.L3 IMVC SEI MESSAGES. .. eteeittte ittt ettt ettt ettt ekttt ek e e ettt e e e kbt e e e ket e e ket e s bt e e smb e e e ea b e e e b b e e e bb e e anbneeenbeeennreas 700

H.13.1 SEIMESSAGE SYNEAX 1eutiiiiiiiiiiiteeitee ettt ettt ettt ettt b ekt e e bt e sb e e e bt e b e e sb e e st et e s e e nneennee s 700

H.13.1.1 Parallel decoding information SEI MeSSage SYNaXccouiriiiiiiiiieniinieeniee e 700

H.13.1.2 MVC scalable nesting SEI MESSAgE SYNTAXecveiuirierieiieiesieeie sttt sttt 700

H.13.1.3 View scalability information SEI MESSAgE SYNTAX......c.eciveereiiiieiiiieiteeseesireesteesteeseesneesreesreessnesnnas 701

H.13.1.4 Multiview scene information SEI MeSSage SYNTAXccerveieririieiiiieiieseee st 702

H.13.1.5 Multiview acquisition information SEI MeSSage SYNtAXcccverrvrerreerieriiveiiieeseeseeseesnseeseesnesnns 702

H.13.1.6 Non-required view component SEI MeSSage SYNTAXc.ueerverrieerueaiieerieeaeeanieesieeseesneanieeseeeseeesnnas 703

H.13.1.7 View dependency change SEI MESSAJE SYNEAX.......crueiierierieieriesie st sieenie st sie et 704

H.13.1.8 Operation point not present SEI MESSAgE SYNTAXccveeiveerreirieeiiieesieeseesreesteesreeseeseeasseeseessssesnnes 704

H.13.1.9 Base view temporal HRD SEI MeSSAge SYNTAX ..cc.veviriieiiiniiiieiiesiie ettt 704

H.13.1.10 Multiview view position SEI MESSAgE SYNTAXveeiveiveeiveerieesieesireesteeseesseesteesseeseesseesseessesssesnnes 705
H.13.2 SEI MESSAJE SEIMANTICS ... c.veiuiiitieiieiteeieete sttt sttt ettt sttt sb e sb et sb et bkt et sbeesnesbeebeenbesbeenbenbeas 705

H.13.2.1 Parallel decoding information SEI message SEMantiCS........cccccvvivveieerieeiieenieeseeseese e see s 706

H.13.2.2 MVC scalable nesting SEI MeSSage SEMANTICSuuiuiiiuieriiiiieaiiesiee et 707

H.13.2.3 View scalability information SEI message SEMANTICS.........cccoviirieririieieniee e 708

H.13.2.4 Multiview scene information SEI message SEMANTICSccuirurriiiriiereenie e 711

H.13.2.5 Multiview acquisition information SEI message SEMantiCs..........cccovvrieririiniiieeiene e 711

H.13.2.6 Non-required view component SEI Message SEMANTICS.........coueruiireireriieiiee e 714

H.13.2.7 View dependency change SEI Message SEMANTICScccveiieieiiriieienienie e 715

H.13.2.8 Operation point not present SEI MesSage SEMANTICS..........civiiiverivreieeieesieeeseeseeseesee e e e seesnreenes 716

H.13.2.9 Base view temporal HRD SEI MeSSage SEMANTICScccueerieiriiiiiiiieeiiee et siee e 716

H.13.2.10 Multiview view position SEI Message SEMANTICScccvvereiriueiieireeseesieesee e e seesee e seee e 717

H.14 Video usability INfOrMAtioN..........cciiiiiiiieie e e e te et e sraees e e teesneesraeesnee e 717
H.14.1 MVC VUI parameters eXtENSION SYNTAX.......c.eieeuertirieeiterteeiresieeiesteaseestesseesresseebesseesesreaseesresseennesneas 717
H.14.2 MVC VUI parameters eXtension SEMANTICS.c.uivvriiririeeseisieeseesteeseeseeesteesteesseeesseesreessaessseesseessees 718

Annex | — Multiview and depth VIE0 COUINGoouveuiiiiiiiieie et nee e 720

1.1 ST oT) o PRSURRPR 720

1.2 NOIMALIVE TEFEIENCES ... vivitieiicte ettt b et b bbb bbb bt ar e ren s 720

1.3 (D) oL LSRR ROPUTRTRRTRIN 720

1.4 YA o] o] (A VAT (0] 4PN 721

1.5 (@00 1Y =T T) TSRS 721

1.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships......... 721

1.7 SYNTAX ANG SEMANTICS ...ttt ettt et et e e ke e she e es b e e s be e sbe e sab e e mbeenbeesabeanbeebeenneeannas 721
1.7.1 Method of specifying syntax in tabular form...........cco v 721
1.7.2 Specification of syntax functions, categories, and deSCripPLOrScouiiiiriieiiiiieeiee e 721
1.7.3 SYNLaX iN TAOUIAI FOIM ... nae s 721

1.7.3.1 N YN I T Y] 7 SR URUBORR 721

Rec. ITU-T H.264 (08/2021) Xiii

1.7.3.2 Raw byte sequence payloads and RBSP trailing bits SyNntaXccccovviiininiiniiieieee e 721

1.7.3.3 Y Lo g =T o LT Y - VSO 723
1.7.3.4 STCE ALA SYMEAX ...ttt bbbt ettt b e bt b e e s bbb e b nbe e nbe e 723
1.7.3.5 Y T (] o] [T S Fo Y=Y)Y v O PSSRSO 723

1.7.4 SBIMANTICS ...ttt ettt ettt ettt et e h e eh bt e st e bt e eh e e e R bt ek £ e R e e eE R e b e e bt e eh e e eRae ekt e ebeeebe e et e e nbeenree s 724
1.7.4.1 NAL UNIE SEMANTICS ...ttt sttt e et ste et e et e steesteeeseeeteesteesreeesseesaeenneeenneensennsenas 724
1.7.4.2 Raw byte sequence payloads and RBSP trailing bits Semantics.........cccccevviiiiiiieniineiiecnee e, 731
1.7.4.3 SHICE NEAUEBT SEMANTICS ... vi ettt ettt ettt ettt st e et et e e be e bt e enbeenbeenbeenneeaneas 733
1.7.4.4 SHCE LA SEMANTICS ... eevviitieie ittt sttt s et et e b sbe e s e s be e st e sbeeneesbesteenbente e 733
1.7.4.5 MacrobloCK 1ayer SEMENTICSoiuiiiiiiiieie ettt sttt e e nne e sbeesree s 733

1.8 MV CD TECOMING PIOCESSveeuvevieieeiteeteenteateete sttt st ese bbb e btk e bt be e bt s bt e he e bt e b e e bt ek e et e sbe et e nb e e s e e bt enn b nees 734
1.8.1 MVCD decoding process for PIiCture Order COUNE..........cueiivieiieiie it 735
1.8.2 MV C decoding process for reference picture lists CONStIUCTIONcceeiiiiiiiiie i 735
1.8.2.1 Initialization process for reference picture list for inter-view prediction references.............cc........ 735
1.8.2.2 Modification process for reference PIiCture lStS.........oooveiiiiiiiiiiiii e 735

1.8.3 MVCD decoded reference picture Marking PrOCESScoviverierierienieie et 735
1.8.4 MVCD inter prediction and inter-view prediction PrOCESScoueeiiieiierieiiiienie e 735
1.8.5 Specification of DItSIrEAM SUDSELSoiviiiii e 735
1.8.5.1 Derivation process for required anchor VIEW COMPONENESccceiiveiiveerieeiieriieeiieeseesieessieesreesneens 735
1.8.5.2 Derivation process for required non-anchor View COMPONENTSc.eiverierierieneerenieeie e 735
1.8.5.3 SUb-DitStream eXtraCtion PrOCESSciviiiieieerteeseesteeseestee st e e e e te e st e s e e e e e sreesreesnaeateesreesneeanees 736
1.8.5.4 Specification of the base VIeW DItSIIEAMccoiiiiiiiiiiii s 737
1.8.5.5 Specification of the stereoscopic texture DItStream...........oocvviiiiiiiii e 738

1.9 PTG PIOCESS. 1t vveesteetee sttt ettt e steesteeaseeeteesteesteeaseeesteesseeeseeesbeesseeaseeesee e eeeneeeaneeeseenteeaneeeneeeneeenreeeneeenreenreeas 738
110 ProfileS @nd IBVEISc.eoiiieieicce ettt r et nnes 738
T o o 1 USRS 738
1.10.1.1 Multiview Depth High Profile..........coiiiiiiiiiiiii sttt re e sre et 738
1.10.1.2 MFC Depth High Profile ..o 739
LL0.2 LBVEIS e b bRt b e Rt be e r e e b Ee et nre e e e 740
1.10.2.1 Level limits common to Multiview Depth High profilesccooiiiiin 740
1.10.2.2 Profile Specific IEVE] TIMILSoiiiiii s 743

0 R Y (=T £ =T 4 (o 0 T | SR OP SR 743
.12 MVCD hypothetical reference eCOUEN..........c.viiuiiiiei i te e e 743
1.13 IMIV/CD SEI MESSAGES ... uteeetteeaitteeteteaiteee st e e ettt e e akee e s bt e e oabe e e aabe e e aab e e ek b e e oabb e e oabe e e ebbe e ek beeanbeeeanbeeeenbeaennbeaeas 743
L.13.1 SEIMESSAGE SYNTAX ..veieiierieiireeieiesietestteestteessteesssteesseeessseeeasseeassseeasaesanseeesssesesssnsessenesssenesssenessnnens 743
.13.1.1 MVCD view scalability information SEI message SYNTaXccoouiiiieiieiieeiiieiie e 743
1.13.1.2 MVCD scalable nesting SEI MESSAgE SYNTAXc.veiviuiiieeiiriieieniiaiie sttt ses 745
1.13.1.3 Depth representation information SEI MeSSAge SYNTAX........eruieriirieiiiiieiiiesiee et 746
1.13.1.4 3D reference displays information SEI Mmessage SYNtaXcccvveiiriiiiieninieiesieie e 747
1.13.1.5 Depth timing SEI MESSA0E SYNAX.......cuciivieirieiieiiieeitiesteeseessteesteesteesreesteesteesseessaeesseesreesseessessseeas 747
1.13.1.6 Alternative depth information SEI MEeSSAgE SYNTAXccveirieiriieiiierieeiiiesieesiee e e see et e sieeseeesaeeseee s 748
1.13.1.7 Depth sampling information SEI MeSSAge SYNTAX.........ccueiiuiriuieiieiieesireesieeseeseessieesteesneseeesreeseees 749
1.13.2 SEI MESSAgE SEMANTICSc..tieutieitieitieeie ettt ettt b e b et e e bt e she e e hb e e be e abeeeabeambeeebeeseeeanbeenbee e 750
1.13.2.1 MVCD view scalability information SEI message SEMAaNtiCscccevververieeriesreeseesneereeseeesenens 752
1.13.2.2 MVCD scalable nesting SEI message SEMANTICScccvieiivieiiiieiciiee e eiee st sae e e sinaesane e 753
1.13.2.3 Depth representation information SEI message SEMantiCs...........cuuvuvriiiirenieiiiieenece e 753
1.13.2.4 3D reference displays information SEI message SEMAaNtICScccvevveiiveeieesieeiiieereeseesne e e e sreesenens 756
1.13.2.5 Depth timing SEI MeSSage SEMANTICS.coeiuirtiiieitiaiieierie ettt sb e n s 759
1.13.2.6 Alternative depth information SEI message SEMANTICSc.cvevverieeiiieieesieesieeseeseeseesee e e seees 759
1.13.2.7 Depth sampling information SEI message SEMANTICScooieiiiriiiiiiiiie e 763

1.14 Video usability INFOIMALION..........ciiiiiiii ittt nbeesreesneeaneas 764
1.L14.1 MVCD VUI parameters eXtENSION SYNTAXccveeivreiureiireaiueeiseesreeieesseesseesseesseessssssesssesssessssesseesseens 764
1.14.2 MVCD VUI parameters eXtenSion SEMANTICScoeiierririerienieeiesieeie sttt sre et 764
Annex J — Multiview and depth video with enhanced non-base View coding...........ccooeriiiiiiniiiieiicne s 767
J.1 {0l 1 OO PPRTUUPRTRUPROPI 767
J.2 NOIMALIVE FEFEIBNCES ...ttt ettt ettt et e st e sttt e et e s be e st e e ree e bt e sbeeereeebeesbeeareeaneeenneenreens 767
J.3 [=) T 3T 3L OSSPSR 767
J.4 F N a] o] (=Y T 1o] TSRO P TP PP TPTPP 767
J.5 (000 1Y <11 o] TR OPPR 767
J.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships......... 767
J.6.1 Inverse sub-macroblock partition SCANNING PrOCESS........civiiveirieeieeiresie e e e sre e sre e e sve e e sreesrae s 767

Xiv Rec. ITU-T H.264 (08/2021)

J.7 SYNEAX BNG SEMANTICS ...ttt b et b e bt e bkt et b et n bt bt e eb e e bt e b e nbeese e b e 768

J7.1 Method of specifying syntax in tabular form...........ccco i 768

J.7.2 Specification of syntax functions, categories, and deSCIIPLOrScoviiveiiiieierieieseee e 768

J.7.3 SYNtaX iN taDUIAN FOMM ...t e et e e st e arae e aeesreenree s 768

J.7.31 INALL UNIE SYNMTAX 1.1ttt ettt sttt ettt ettt e s bt ettt e bt e bt e et e e e sb e e b e e ebe e ebe e e beesbeeebeeenneenbeeareens 768

J.7.3.2 Raw byte sequence payloads and RBSP trailing Dits SyNntaXccccvviininiininieiee e 769

J.7.3.3] TTotc T Vo [T g] v O PSPPSR 773

J.7.34 STCE ALA SYNMEAX ...ttt b et b e bbbt eb e e et bt e b sbe e nbe e 776

J.7.35 Y T (o] o] [T S Fo VY= G Y L O ST RUBOR 777

J.7.3.6 Macroblock layer in 3D-AVC eXtENSION SYNTAXcvieiueriieiiiiaitiesieeaieesieesieesseeeseeeseeesieessaeeseeesreeas 778

J.7.4 SIMIANTICS .ttt ettt sttt ettt b et bbbt Rt b bt Rt h Rt bt Rt bRt e e b e e Rt e nheeEeenbeeEeerenre s 781

J74.1 NAL UNIE SEMANTICS ...ttt ettt ettt ettt ettt e st et e st e e b e e sbe e et et et e e sbeesbeeenneenbeesbeeas 781

J.7.4.2 Raw byte sequence payloads and RBSP trailing bits SemanticS........cccccvvevvveiiniienie e 782

J.7.43 SIICE NEAART SEIMANTICS ... eitietie ittt sttt ettt st et e s be st e sbeene et ste e b nee e 788

J.7.4.4 SHCE datA SEMANTICS. ... ueeiieitie ittt ettt st st e et e st e st e sr e e e e e sbeesreeenbeenteesreenneeaneas 790

J.7.45 Macroblock IaYer SEMANTICSvecueeiiiiiiecie ettt e et e et e e e e e nraesreeas 790

J.7.4.6 Macroblock layer in 3D-AVC eXtenSion SEMANTICS.coviieiiiriiieitisiee e 791

J.8 3D-AV C UECOUING PIOCESS ... veveeieerteeteesteetee ittt et sbe ettt eete e b e sb e e b e ebe e b e ebeeseeabeebe e nbeebe e b e sbe e s e e nbeabeenbesbeennenbeas 792

J.8.1 3D-AVC decoding process for reference picture lists CONStrUCLION...........ccccvveviiiiieiee e 792
J.8.2 3D-AVC inter prediction, inter-view prediction, view synthesis prediction and adaptive luminance

(o700 0] 1] 15T L o] OSSOSO 793

J.8.2.1 Derivation process for motion vector components and reference indiCes...........cocceevveeiieiiienieniens 796

J.8.2.2 Derivation of prediction weights in depth-range-based weighted prediction.............c.cccocevvnirnenn. 805

J.8.2.3 Derivation process for motion vectors and reference indices for adaptive luminance compensation807

J.8.2.4 Derivation process for prediction weights in adaptive luminance compensation..............c.cccceevuenee. 807

J.8.3 Specification Of DItSIrEAM SUDSELSccviiii et e e s re e s e e s e e sreesree s 809

J.8.4 Decoding process for depth range Parametersooviieiiiieierieie e 809

J.9 PAISING PIOCESS. ..tttk et ettt bttt h et bt s bt h bRkt h et e b e R b H e s ek e s bRt e bt h e bbbt nee e 810

Jo.1 Alternative CABAC parsing process for slice data and macroblock layer in depth extension 810

J9o.11 INTLHAIIZATION PROCESS. .. .eeuveitietie ittt b et b et sb e e bt e b sbe e b b 810

J9.1.2 BiNAiZAtION PrOCESS ...eouveeieiiiiiiie st e st e e s et st et e e s e e s e e e e e e steesteeaseeesteesteesseeesbeesteeaseeasaeenseenreens 811

J.9.1.3 DECOTING PrOCESS FIOWeiiiiiiiiiie ettt 812

N O T = o) 1 L= TSg: LaTo B Lo =Y [OOSR 814

OIS R =] 11 PRSPPSO PRI 814

J.10.1.1 Enhanced Multiview Depth High profile ... 815

JUL0.2 LBVEIS .t b et b e R bt beate et nre et et e 815

J.10.2.1 Level limits for Enhanced Multiview Depth High profile...........ccoooiiiiiiie 815

J.10.2.2 Profile Specific IBVE] TIMILSoviiiiiiie s 815

S N =Y (=TS =T g4 {0 0 T | ST 816

J.12 3D-AVC hypothetical reference deCOUENccviiiiiiiiiic e e s 816

J.13 3D-AVC SEI MESSAGESuveeeiteieittieetee e ettt e ettt e et e e e sttt e e ekt e e et e e sabe e e sabe e e ek be e ek b e e embe e e asbe e e asbeeeabbeeebbeeenbeeennbnaans 816

J.13. 1 SEIMESSAQE SYNTAX ..vvreiriereiiirieiieesietestteesstseessteessstaesasseessseeessseeeasseeansseeasseeeasseeessseeenseneenseeessnnesssnnens 816

J.13.1.1 Constrained depth parameter set identifier SEI MeSSAgE SYNLAX ...cvvevveriuierieiniieeiiieniee e siee e 816

J.13.2 SEI MESSAQE SEMANTICSeiuveeieeiiesiieeeesieesite s e este e st e ss e e ste e s teesseeesteesteesneeas e esseesseesneeanenesseenneeaneeennee e 816

J.13.2.1 Constrained depth parameter set identifier SEI message SemantiCscocevveerienieniienieeneeninens 816

J.14 Video usability INFOIMATION........couii ittt 817

List of Figures

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a framec.......... 23

Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields.................. 24

Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields...................... 25

Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a framec.ccceeee 25

Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields...................... 25

Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into two SHICESccecvviriiiiiiiieee 26

Figure 6-8 — Partitioning of the decoded frame into MacroblOCK PaIFS............cceiiiiiiiiiiii s 27

Rec. ITU-T H.264 (08/2021) XV

Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock

O LU0 ST USSR 28
Figure 6-10 — Scan for 4X4 IUMa BIOCKS.cuiiiiiiiie et sn e nee e ste e nneeanee e 29
Figure 6-11 — Scan for 8X8 IUMA DIOCKS.oiiiiiiiiii ittt 29
Figure 6-12 — Neighbouring macroblocks for a given macrobloCK ..o 31
Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames.........cccccovvvieviciic e 32
Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)...............cccccevveenn. 33
Figure 7-1 — Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8,

or in the range of 12 to 18, inclusive, or in the range of 20 t0 31, INCIUSIVEcccevvviiiiiiiciiec e 71
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrMAtIVE)ccooiiiiiiiiiie i 133
Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)ccocovvviiiniinnienenen 161
Figure 8-3 — Directional segmentation prediction (iINfOrMAtiVE)cocuiiiiiieiii e 162
Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions

(un-shaded blocks with lower-case letters) for quarter sample luma interpolation.............cccccovveiiiiiiniiicncin, 169
Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer

POSItion SAMPIES A, B, C, @GN D ..o.vviiiiiieiicie sttt ettt et a e nre e raeeaeenraenree s 171
Figure 8-6 — Assignment of the indices of dCY t0 IUMAdXABIKIOUXcocieiiiiiiiiiiiii e 177
Figure 8-7 — Assignment of the indices of dcC to chroma4x4BIkldx: (a) ChromaArrayType equal to 1,

(b) ChromaAITayYTYPE EUUAT L0 2oueeiieieeeiie ittt sb et nb et bt bbb e b e e sbeebeenbesbeenaesreas 179
Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)...........ccccooirieiiiieiiiieie e 180
Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)..........c.ccooeviiiiiiiiiieiiceee 181
Figure 8-10 — Boundaries in a macroblock t0 be fIlteredccviv i 199
Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary 203
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)...........cccocovvveniniinennnn 225
Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)cccooeiiiiiiiciinies 271
Figure C-2 — HRD BUTFEr MOGELc.eiiiiiie ettt e st e e ste e s be e s e e e rreesaeenreeas 311

Figure D-1 — Rearrangement and upconversion of checkerboard interleaving (frame_packing_arrangement_
187 LS=T0 [T L (o 0) TSP OO PP UPT PP 389

Figure D-2 — Rearrangement and upconversion of column interleaving with frame_packing_arrangement_type
equal to 1, quincunx_sampling_flag equal to 0, and (X, y) equal to (0, 0) or (4, 8) for both constituent frames389

Figure D-3 — Rearrangement and upconversion of column interleaving with frame_packing_arrangement_type
equal to 1, quincunx_sampling_flag equal to 0, (x, y) equal to (0, 0) or (4, 8) for constituent frame 0 and
(X, y) equal to (12, 8) fOr CONSLILUBNT FIAME Lccueiiiiiiieiet ettt sb e seee s 390

Figure D-4 — Rearrangement and upconversion of row interleaving with frame_packing_arrangement_type
equal to 2, quincunx_sampling_flag equal to 0, and (X, y) equal to (0, 0) or (8, 4) for both constituent frames390

Figure D-5 — Rearrangement and upconversion of row interleaving with frame_packing_arrangement_type
equal to 2, quincunx_sampling_flag equal to 0, (x, y) equal to (0, 0) or (8, 4) for constituent frame 0, and
(X, y) equal to (8, 12) for CONSLILUENT FTAME Lccveiiieiieeee et st e et e e st e e e e e e e saeenree s 391

Figure D-6 — Rearrangement and upconversion of side-by-side packing arrangement with frame_packing_
arrangement_type equal to 3, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (4, 8) for both
CONSEIEUBNT FrAIMES ... ettt e e e te e st e es e e s e e bt e saeeesteesteesbeeaseeeseeeaeesbeesreeeteeneeenneeas 391

Figure D-7 — Rearrangement and upconversion of side-by-side packing arrangement with frame_packing_
arrangement_type equal to 3, quincunx_sampling_flag equal to 0, (x, y) equal to (12, 8) for constituent
frame 0, and (x, y) equal to (0, 0) or (4, 8) for constituent frame 1ccceviiiiiiiiiii e 392

XVi Rec. ITU-T H.264 (08/2021)

Figure D-8 — Rearrangement and upconversion of top-bottom packing arrangement with frame_packing_
arrangement_type equal to 4, quincunx_sampling_flag equal to 0, and (X, y) equal to (O, 0) or (8, 4) for
DOt CONSEITUBNT TTAMES ... ittt ettt e st e s st e et e e st e e ereeebeesbeesteeeneeenbeenneeas 392

Figure D-9 — Rearrangement and upconversion of top-bottom packing arrangement with frame_packing_
arrangement_type equal to 4, quincunx_sampling_flag equal to 0, (x, y) equal to (8, 12) for constituent

frame 0, and (X, y) equal to (0, 0) or (8, 4) for constituent frame 1cccevieiiiiiiiecic e 393
List of Tables
Table 5-1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)ccccccveveviieenennnn, 19

Table 6-1 — SubWidthC, and SubHeightC values derived from chroma_format_idc and separate_colour_plane_flag ..22

Table 6-2 — Specification of input and output assignments for clauses 6.4.11.1 10 6.4.11.7cccceevvvevieeiieerie e e, 32
Table 6-3 — Specification Of MDAUAIN ..ot bbbttt sttt be e 37
Table 6-4 — Specification of MBAAAIN QN YIMcoiiiiiii bbb 38
Table 7-1 — NAL unit type codes, syntax element categories, and NAL unit type Classes........cccovvvveeierrieeniniieeneenen, 65
Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule 76
Table 7-3 — Specification of default scaling lists Default_4x4 Intra and Default_4x4_Inter........c.ccccovvveviveviviieennennnn, 76
Table 7-4 — Specification of default scaling lists Default_8x8_Intra and Default_8X8_Inter............cccoceviviniiniiiennnn 77
Table 7-5 — Meaning of Primary _PIC tYPEooui ittt ettt b et ne e 84
Table 7-6 — Name asSOCIAtION 10 SHCE LYPE . .eoviiiieiieeii ettt ettt e e beenbeenneas 87
Table 7-7 — modification_of pic_nums_idc operations for modification of reference picture lists............cccoocvvvveinennen. 93
Table 7-8 — Interpretation of adaptive_ref_pic_marking_mode_flagccooeiiiiiiiiiiii 94
Table 7-9 — Memory management control operation (memory_management_control_operation) values....................... 96
Table 7-10 — Allowed collective macroblock types fOr SHCE _TYPe......couiiieiii e 98
Table 7-11 — MacrobloCK tYPes FOr 1 SHCESciuviiiiiiee ettt be e sbe e sae e s ree e be e sreesneeenee e 100
Table 7-12 — Macroblock type wWith Value 0 fOr ST SHICES.......cccviiieiiiie e 101
Table 7-13 — Macroblock type values 0 to 4 for P and SP SHICES.ccoviiiiiiiiiicice s 102
Table 7-14 — Macroblock type values 0 t0 22 fOr B SHICESc..ueiiieiiiiie e 103
Table 7-15 — Specification of CodedBIockPatternChroma VAIUEScccveiieiiiiiiieiie e 105
Table 7-16 — Relationship between intra_chroma_pred_mode and spatial prediction modes............ccccccvevvevieriecnnnenn, 106
Table 7-17 — Sub-macroblock types in P macroblOCKScoiiiiiiiiiiiii s 107
Table 7-18 — Sub-macroblock types in B MaCrODIOCKS.ciiiiiiiiiiiiiicsieee s 108
Table 8-1 — Refined SIICE groUP MaP LY PRviiiie ettt sb et ettt sa e bbbt e b e sabe e b 117
Table 8-2 — Specification of Intradx4PredMode[luma4x4Blkldx] and associated NAMES..........ccevvveriveerieerieesveeienenns 132
Table 8-3 — Specification of Intra8x8PredMode[luma8x8BIlkldx] and associated NAMES.........cccevveervereerverirerennns 138
Table 8-4 — Specification of Intral6x16PredMode and associated NAMES.........cuvivierieiieiie e 145
Table 8-5 — Specification of Intra chroma prediction modes and associated NAMEScccveieerieiieiiiee e 147
Table 8-6 — Specification of the Variable COIPICcccciiiiii i s e 155
Table 8-7 — Specification 0f PICCOUINGSIIUCT(X) ...vviueiiiiieiiiiiiiie ittt 155
Table 8-8 — Specification of mbAddrCol, yM, and VErtIMVSCAIEc.oooveiieiieiieeie e 157
Table 8-9 — Assignment of prediction UtHHZation Flagscooiiiiiii i 159
Table 8-10 — Derivation of the vertical component of the chroma vector in field coding mode............ccccccoviiiincee 165

Rec. ITU-T H.264 (08/2021) XVii

Table 8-11 — Differential full-sample TUMa T0CALIONSoviiiiiiiiiie s 169

Table 8-12 — Assignment of the luma prediction sample predPartLX [Xi, YL] ceeeveereeiieiieiie e 171
Table 8-13 — Specification of mapping of idx to cij for zig-zag and field SCaN ... 181
Table 8-14 — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan...........cccovvvvvviiiiiiiiice 182
Table 8-15 — Specification of QPc as @ FUNCLION OF QP1ccueiiiiiiiiiiii s 183
Table 8-16 — Derivation of offset dependent threshold variables o and B” from indexA and indexB...............ccccoueee. 206
Table 8-17 — Value of variable t"co as a function of indexA and BS..........ccoii 207
Table 9-1 — Bit strings with "prefix™ and "suffix" bits and assignment to codeNum ranges (informative) 210
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)c.cccceeuneee. 210
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(V)............ 211
Table 9-4 — Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes 212
Table 9-5 — coeff_token mapping to TotalCoeff(coeff _token) and TrailingOnes(coeff_token).........cccccevinieniene. 216
Table 9-6 — Codeword table for level_prefix (INfFOrmMatiVe) ..o 219
Table 9-7 — total_zeros tables for 4x4 blocks With tZVICINAEX 110 7 ..vvvovveiiiic e 221
Table 9-8 — total_zeros tables for 4x4 blocks with tZVICINAeX 8 10 15........cciiiiiiiieii e 221
Table 9-9 — total_zeros tables for chroma DC 2X2 and 2X4 DIOCKSc.ccoiiiiiiiii i 222
Table 9-10 — Tables FOr FUN_DETOIE.... ..o s s e s e e nba e e s baeeaneeas 223
Table 9-11 — Association of ctxldx and syntax elements for each slice type in the initialization process 227
Table 9-12 — Values of variables m and n for ctXlIdX from 0 t0 10.........ccviiiiiiiiiiiiiie s 228
Table 9-13 — Values of variables m and n for ctxldX from 1110 23.......ccoiiiiiiiiiiiiciee s 228
Table 9-14 — Values of variables m and n for ctxlIdX from 24 10 39.........ccccviriiiiiiiic s 229
Table 9-15 — Values of variables m and n for ctxldX from 40 10 53........cccoiiiiiiiieie s 229
Table 9-16 — Values of variables m and n for ctxldx from 54 t0 59, and 399 t0 401.........ccccevvriireririeeicneeeees 229
Table 9-17 — Values of variables m and n for ctxldX from 60 10 69............coriiiiiiiiiiiiiie s 230
Table 9-18 — Values of variables m and n for ctxIdX from 70 10 104........c.cooiiiiiiieie e 230
Table 9-19 — Values of variables m and n for ctxldx from 105 t0 165........ccccoiiiiiiiiiiiiiiee s 231
Table 9-20 — Values of variables m and n for ctxldX from 166 t0 226..........ccccoververiiininiinenese s 232
Table 9-21 — Values of variables m and n for ctxldx from 227 10 275cooiiiiiiiiiie s 233
Table 9-22 — Values of variables m and n for ctxldX from 277 10 337cooiiiiiiiiiii s 234
Table 9-23 — Values of variables m and n for ctxlIdx from 338 10 398cccoviiiiiiii 235
Table 9-24 — Values of variables m and n for ctxldX from 402 t0 459ccccviiiieiiicce s 236
Table 9-25 — Values of variables m and n for ctxldx from 460 10 483..........cocoiiiiiiiiiiiii s 237
Table 9-26 — Values of variables m and n for ctXldX from 484 10 571ccooiiiiiiiiiiiie s 237
Table 9-27 — Values of variables m and n for ctxldx from 572 10 659cccvveiiiiiiiiiiiice s 239
Table 9-28 — Values of variables m and n for ctxldX from 660 t0 717cccociieieiiiiiiiinene e 241
Table 9-29 — Values of variables m and n for ctXldX from 718 10 775ccoiiiiiiiiiii s 242
Table 9-30 — Values of variables m and n for ctxldX from 776 10 863..........cccooieiiiiiiiiiiie s 243
Table 9-31 — Values of variables m and n for ctxIdX from 864 t0 951ccoiiiiiiiiiiieiie e 245
Table 9-32 — Values of variables m and n for ctxldx from 952 £0 1011cccovveiiiiiiiiiniiieeseee s 247
Table 9-33 — Values of variables m and n for ctxldx from 1012 t0 1023cccoevveriiiiiiiininen e 248

Xviii Rec. ITU-T H.264 (08/2021)

Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffsetcco........ 249

Table 9-35 — Bin string of the unary binarization (iINfOrMAatiVE)...........ccoiiiiiiiiii e 252
Table 9-36 — Binarization for macroblock types in I SHCES........cooiiiiiiii e 254
Table 9-37 — Binarization for macroblock types in P, SP, and B SHICES........ccccvvviiieiieiie e 255
Table 9-38 — Binarization for sub-macroblock types in P, SP, and B SHCEScccoviiiiniiiiiiiiic e 256

Table 9-39 — Assignment of ctxldxInc to binldx for all ctxldxOffset values except those related to the syntax
elements coded_block_flag, significant_coeff flag, last_significant_coeff flag, and coeff_abs_level minusl....258

Table 9-40 — Assignment of ctxldxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,

significant_coeff_flag, last_significant_coeff flag, and coeff_abs level minusl..........ccccccovviiiiiiiiiciiciinenn, 259
Table 9-41 — Specification of ctxldxInc for specific values of ctxldxOffset and binldX..........cccoeveviviiieiieieceee, 267
Table 9-42 — Specification of ctxBlockCat for the different BIOCKSccoiiiiiiiii 268
Table 9-43 — Mapping of scanning position to ctxldxInc for ctxBlockCat == 5,9, 0r 13.....ccccooiiiiiiiiiiiiiiee 269
Table 9-44 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldXcccccevviiiiiiiniieinnnene 274
Table 9-45 — State transition tADIE...........coviiie s 275
TaDIE AL — LEVET TIMITS.eiiiiii it b bbbt b bbbt et b ettt a et besees 294
Table A-2 — Specification of cpbBrVclFactor and cpbBrNAIFACLOrcooiiiiiiiiiic e 297
Table A-3 — Baseline and Constrained Baseline profile level Imits ... 298

Table A-4 — Main, High, Progressive High, Constrained High, High 10, Progressive High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile

LY =T I 1T ST UPT RPN 299
Table A-5 — Extended profile IVE] TIMILScooiiiiiii b 300
Table A-6 — Maximum frame rates (frames per second) for some example frame Sizes..........cccooevieiiiiiiiie e 301
Table A-7 — Maximum DPB size (frames) for some example frame SIZES.........ccccveiiieiie i 304
Table D-1 — Interpretation Of PIC SIUCT.......cciiiie it be et et e sneearbe e reesreeaneeeeee e 353
Table D-2 — Mapping of Ct_type t0 SOUICE PICTUME SCANveivviiviiiieitiiiiete ittt nb e nees 354
Table D-3 — Definition Of COUNtING_tYPE VAIUESooueiiiieiie ettt ettt et seeesnee e 355
Table D-4 — scene_tranSition_TYPE VAIUEScouiiiiiiiieiie ettt ettt sab et be e b e e sabe et 362
Table D-5 — film_grain_ model_itd VAIUES...........ooiiiiee sttt rae et esraeanaeeee e 370
Table D-6 — blending_MOUE_Id VAIUES.........ccveiieiieiie et se et se et e e et esaa e sneeesteesneesnaeanteesaeesreeaneeeneee e 371
Table D-7 — filter_RiNt_tYPE VAIUES.c..oiiiiiieiee bbbttt b e b s 378
Table D-8 — Interpretation of camera_iso_speed_idc and exposure_indeX_IdC........ccceviiiieiiieniniie e 382
Table D-9 — Definition of frame_packing_arrangement_tYPe.........cocviiuiiieeiieiieie e e se e r st e e ee e e s esneeeeee e 384
Table D-10 — Definition of content_interpretation tYPe........ccuviee et 386
Table D-11 — transform_tyPe[I] VAIUESc.viiiiieiiiiee ettt 407
Table D-12— manifest_sei_deSCription] i] VAIUESooiiiiiii et 417
Table E-1 — Meaning of sample aspect ratio INAICALON...........ccciiiiiiieiie e sareenee e 424
Table E-2 — Meaning of VIAEO FOrMAL.........cciiiiiiie i et e e ee e re e sraeaneeeeee e 425
Table E-3 — Colour primaries interpretation using colour_primaries syntax elementcocoovvenviiniiinncsienenn 426
Table E-4 — Transfer characteristics interpretation using transfer_characteristics syntax element............cccccoovvenene. 427
Table E-5 — Matrix coefficients interpretation using matrix_coefficients syntax elementcccocciiiiiiiinniecinnn 434
Table E-6 — Divisor for computation OF Atfidpn(N)....eoeerereeririiieiese et 437

Rec. ITU-T H.264 (08/2021) XixX

Table G-1 — Name association to slice_type for NAL units with nal_unit_type equal t0 20..........ccccoeviiiiiiiiinenn. 480
Table G-2 — Interpretation of adaptive_ref _base _pic_marking_mode_flagccccooiiiiiiiiii 489

Table G-3 — Memory management base control operation (memory_management_base_control_operation) values....490

Table G-4 — Allowed collective macroblock types fOr SHCE TYPE.....viiveieeiie e 493
Table G-5 — Inferred macroblock type 1_BL fOr EI SHCES........coviiiiiiiiiiiicee s 493
Table G-6 — Scale values cS for transform coefficient level SCaliNgcccooiiiiiiiiiiii i 553
Table G-7 — Macroblock type predictors MDTYPEILPIedoooiiiiiiiii e 569
Table G-8 — Sub-macroblock type predictors subMbTypelLPred[mbPartldX J........ccccevvviiiiiieiieie e 570
Table G-9 — 16-phase luma interpolation filter for resampling in Intra_Base predictioncccocvvvevniiinniiienenn. 579
Table G-10 — Mapping of (nX, nY) to coeffTokenldX and VICE VEISa........c.cociiiiiiaiieiii e 604
Table G-11 — Association of ctxldx and syntax elements for each slice type in the initialization process 607
Table G-12 — Values of variables m and n for ctxldx from 1024 t0 1026cooverviiiiiiinenine e 608
Table G-13 — Values of variables m and n for ctxldx from 1027 t0 1030ccoerveriiiiinininese e 608
Table G-14 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffset........................ 608
Table G-15 — Assignment of ctxldxInc to binldx for the ctxldxOffset values related to the syntax elements

base_mode_flag and residual_prediction_flag...........ccoiiiiiiiiiii e 609
Table G-16 — Scalable Baseline and Scalable Constrained Baseline profile level limitscccocviiiniiniinnen 620
Table G-17 — Specification of cpbBrVclFactor and cpbBrNalFactor..........coviiiiiiiiiii e 620
Table H-1 — Association between frame packing arrangement type and syntax elementscccccceeveeiievie e e, 672
Table H-2 — modification_of pic_nums_idc operations for modification of reference picture lists...........c.cccevvvenee. 676
Table H-3 — Association between camera parameter variables and syntax elements.ccccoovvvvreneiinicienesenee 714
Table I-1 — Definition of depth_representation_TYPEooii it 754
Table 1-2 — Association between depth parameter variables and syntax elements...........ccocevieeiiiiiiiec e 755
Table I-3 — Association between camera parameter variables and syntax elementsccccoovvevvevie e vie e 758
Table J-1 — Respective syntax elements for pre_slice_header_src, pre_ref lists_src, pre_pred_weight _table src

and pre_dec_ref PIC MArKING_ SICoiviiieiieciie ettt be et s e st e et e e sbeestaeeseeesaeesteesrbeeeeenreenrneas 789
Table J-2 — Semantics of the values of pre_slice_header_src, pre_ref_lists_src, pre_pred_weight _table src and

pre_dec_ref PIC MArKING SIC......oiiiiiiiiiiie ettt ettt ettt b e e sb e et e e e b e e sbeesbneebeenbeenbeeas 789
Table J-3 — Macroblock type values 0 t0 4 fOr P and SP SHCEScc.uiiiiiiieiieiie e 791
Table J-4 — Association between depth parameter variables and syntax elements...........cccccovevivevievii i 810
Table J-5 — Association of ctxldx and syntax elements in the initialization ProCess...........cccovriireniiiiniciencieses 810
Table J-6 — Values of variables m and n for ctxldx from 1031 10 1039cccovviiiiiiiiiiiiieeseee s 811
Table J-7 — Values of variables m and n for ctxldx from 1040 t0 1052cccocveiviriiirininiineseee s 811
Table J-8 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffset...............cceeuee.e. 812

Table J-9 — Assignment of ctxldxInc to binldx for the ctxldxOffset values related to the syntax elements
mb_vsskip_flag, mb_direct_type flag, mb_alc_skip_flag, mb_alc_flagand mb_vsp _flag.......c.ccocovvniiinnnnnns 813

XX Rec. ITU-T H.264 (08/2021)

Recommendation ITU-T H.264

Advanced video coding for generic audiovisual services

0 Introduction

This clause and its subclauses do not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This clause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new Recommendation | International Standard.
The standard has since been maintained and enhanced jointly by VCEG and MPEG.

0.2 Purpose
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting, internet
streaming, and communication. It is also designed to enable the use of the coded video representation in a flexible manner
for a wide variety of network environments. The use of this Recommendation | International Standard allows motion video
to be manipulated as a form of computer data and to be stored on various storage media, transmitted and received over
existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digital terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Serial storage media (digital VTR, etc.)

0.4 Publication and versions of this Specification
This clause does not form an integral part of this Recommendation | International Standard.

This Specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 1 refers to the first approved version of this Recommendation | International
Standard. Version 1 was approved by ITU-T on 30 May 2003. The first published version in ISO/IEC corresponded to
version 1.

Rec. ITU-T H.264 (08/2021) 1

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 2 refers to the integrated text containing the corrections specified in the
first technical corrigendum. The first fully-published version in the ITU-T was version 2 as approved by ITU-T on
7 May 2004, due to the development of the corrigendum during the publication process. Version 2 was also published in
integrated form by ISO/IEC.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 3 refers to the integrated text containing both the first technical corrigendum
(2004) and the first amendment, which is referred to as the "Fidelity range extensions". Version 3 was approved by ITU-T
on 1 March 2005.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 4 refers to the integrated text containing the first technical corrigendum
(2004), the first amendment (the "Fidelity range extensions"), and an additional technical corrigendum (2005). Version 4
was approved by ITU-T on 13 September 2005. In both ITU-T and ISO/IEC, the next complete published version after
version 2 was version 4.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 5 refers to the integrated version 4 text with its specification of the
High 4:4:4 profile removed.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 6 refers to the integrated version 5 text after its amendment to support
additional colour space indicators. In the ITU-T, the changes for versions 5 and 6 were approved on 13 June 2006 and were
published as a single amendment.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 7 refers to the integrated version 6 text after its amendment to define five
new profiles intended primarily for professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles) and two new types of supplemental enhancement information
(SEI) messages (the post-filter hint SEI message and the tone mapping information SEI message). Version 7 was approved
by ITU-T on 6 April 2007.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 8 refers to the integrated version 7 text after its amendment to specify
scalable video coding in three profiles (Scalable Baseline, Scalable High, and Scalable High Intra profiles). Version 8 was
approved by ITU-T on 22 November 2007.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 9 refers to the integrated version 8 text after applying the corrections
specified in a third technical corrigendum. Version 9 was approved by ITU-T on 13 January 2009.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 10 refers to the integrated version 9 text after its amendment to specify a
profile for multiview video coding (the Multiview High profile) and to define additional SEI messages.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 11 refers to the integrated version 10 text after its amendment to define a
new profile (the Constrained Baseline profile) intended primarily to enable implementation of decoders supporting only
the common subset of capabilities supported in various previously-specified profiles. In the ITU-T, the changes for
versions 10 and 11 were approved on 16 March 2009.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 12 refers to the integrated version 11 text after its amendment to define a
new profile (the Stereo High profile) for two-view video coding with support of interlaced coding tools and to specify an
additional SEI message specified as the frame packing arrangement SEI message. The changes for versions 11 and 12 were
processed as a single amendment in the ISO/IEC approval process.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 13 refers to the integrated version 12 text with various minor corrections
and clarifications as specified in a fourth technical corrigendum. In the ITU-T, the changes for versions 12 and 13 were
approved on 9 March 2010.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 14 refers to the integrated version 13 text after its amendment to define a
new level (Level 5.2) supporting higher processing rates in terms of maximum macroblocks per second and a new profile
(the Progressive High profile) to enable implementation of decoders supporting only the frame coding tools of the
previously-specified High profile.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 15 refers to the integrated version 14 text with miscellaneous corrections
and clarifications as specified in a fifth technical corrigendum. In the ITU-T, the changes for versions 14 and 15 were
approved on 29 June 2011.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 16 refers to the integrated version 15 text after its amendment to define
three new profiles intended primarily for communication applications (the Constrained High, Scalable Constrained
Baseline, and Scalable Constrained High profiles). In the ITU-T, the changes for version 16 were approved
on 13 January 2012.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 17-T refers to the integrated version 16 text after its amendment to define
additional supplemental enhancement information (SEI) message data, including the multiview view position SEI message,
the display orientation SEI message, and an additional frame packing arrangement type indication value for the frame
packing arrangement SEI message (the 2D content type indication value).

2 Rec. ITU-T H.264 (08/2021)

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 18-T refers to the integrated version 17-T text after its amendment to
specify the coding of depth signals, including the specification of an additional profile, the Multiview Depth High profile.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 19-T refers to the integrated version 18-T text after incorporating a
correction to the sub-bitstream extraction process for multiview video coding.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 20-T refers to the integrated version 19-T text after its amendment to
specify additional colorimetry identifiers and an additional model type in the tone mapping information SEI message. In
the ITU-T, the changes for versions 17-T, 18-T, 19-T, and 20-T were approved on 13 April 2013.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 21-T refers to the integrated version 20-T text after its amendment to define
an additional frame packing arrangement type indication values for the frame packing arrangement SEI message (the tiled
arrangement type indication value) and to specify the combined coding of video view and depth enhancement, including
the specification of an additional profile, the Enhanced Multiview Depth High profile.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 22 refers to the integrated version 21-T text after its amendment to specify
multi-resolution frame-compatible (MFC) enhancement for stereoscopic video coding, including the specification of an
additional profile, the MFC High profile, and the inclusion of miscellaneous minor corrections and clarifications. In the
ITU-T, the changes for versions 21-T and 22 were approved on 12 February 2014.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 23 refers to the integrated version 22 text after its amendment to specify
multi-resolution frame-compatible (MFC) stereoscopic video with depth maps, including the specification of an additional
profile, the MFC Depth High profile, and the mastering display colour volume SEI message, additional colour-related
video usability information codepoint identifiers, and introduces miscellaneous minor corrections and clarifications. In the
ITU-T, the changes for version 23 were approved on 13 February 2016.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 24 refers to the integrated version 23 text after its amendment to specify
additional levels of decoder capability supporting larger picture sizes (Levels 6, 6.1, and 6.2), the green metadata SEI
message, the alternative depth information SEI message, additional colour-related video usability information codepoint
identifiers, and introduces miscellaneous minor corrections and clarifications. In the ITU-T, the changes for version 24
were approved on 14 October 2016.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 25 refers to the integrated version 24 text after its amendment to specify
the Progressive High 10 profile; support for additional colour-related indicators, including the hybrid log-gamma transfer
characteristics indication, the alternative transfer characteristics SEI message, the 1C+Cp colour matrix transformation,
chromaticity-derived constant luminance and non-constant luminance colour matrix coefficients, the colour remapping
information SEI message, and introduces miscellaneous minor corrections and clarifications. In the ITU-T, the changes
for version 25 were approved on 13 April 2017.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 26 refers to the integrated version 25 text after its amendment to specify
additional SEI messages for ambient viewing environment, content light level information, content colour volume,
equirectangular projection, cubemap projection, sphere rotation, region-wise packing, omnidirectional viewport, SEI
manifest, and SEI prefix, and introduces miscellaneous minor corrections and clarifications. In the ITU-T, the changes for
version 26 were approved on 13 June 2019.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 27 (the current Specification) refers to the integrated version 26 text after
its amendment to specify additional SEI messages for annotated regions and shutter interval information, and introduces
miscellaneous minor corrections and clarifications. In the ITU-T, the changes for version 26 were approved on 22
August 2021.

0.5 Profiles and levels
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets of
the syntax are also stipulated by means of "profiles” and "levels". These and other related terms are formally defined in
clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the

Rec. ITU-T H.264 (08/2021) 3

specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints imposed
on values of the syntax elements in the bitstream. These constraints may be simple limits on values. Alternatively they
may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied by picture height
multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.6 Overview of the design characteristics
This clause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles, and the I_PCM mode of operation in all profiles, the algorithm is
typically not lossless, as the exact source sample values are typically not preserved through the encoding and decoding
processes. A number of techniques may be used to achieve highly efficient compression. Encoding algorithms (not
specified in this Recommendation | International Standard) may select between inter and intra coding for block-shaped
regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal statistical
dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit spatial statistical
dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may be specified for a
variety of block sizes in the picture. The prediction residual is then further compressed using a transform to remove spatial
correlation inside the transform block before it is quantized, producing an irreversible process that typically discards less
important visual information while forming a close approximation to the source samples. Finally, the motion vectors or
intra prediction modes are combined with the quantized transform coefficient information and encoded using either
variable length coding or arithmetic coding.

Scalable video coding is specified in Annex G allowing the construction of bitstreams that contain sub-bitstreams that
conform to this Specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with a smaller
temporal sampling rate than the bitstream, complete access units are removed from the bitstream when deriving the
sub-bitstream. In this case, high-level syntax and inter prediction reference pictures in the bitstream are constructed
accordingly. For spatial and quality bitstream scalability, i.e., the presence of a sub-bitstream with lower spatial resolution
or quality than the bitstream, NAL units are removed from the bitstream when deriving the sub-bitstream. In this case,
inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality signal by data of the lower spatial
resolution or quality signal, is typically used for efficient coding. Otherwise, the coding algorithm as described in the
previous paragraph is used.

Multiview video coding is specified in Annex H allowing the construction of bitstreams that represent multiple views.
Similar to scalable video coding, bitstreams that represent multiple views may also contain sub-bitstreams that conform to
this Specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with a smaller temporal sampling
rate than the bitstream, complete access units are removed from the bitstream when deriving the sub-bitstream. In this case,
high-level syntax and inter prediction reference pictures in the bitstream are constructed accordingly. For view bitstream
scalability, i.e., the presence of a sub-bitstream with fewer views than the bitstream, NAL units are removed from the
bitstream when deriving the sub-bitstream. In this case, inter-view prediction, i.e., the prediction of one view signal by
data of another view signal, is typically used for efficient coding. Otherwise, the coding algorithm as described in the
previous paragraph is used.

An extension of multiview video coding that additionally supports the inclusion of depth maps is specified in Annex I,
allowing the construction of bitstreams that represent multiple views with corresponding depth views. In a similar manner,
as with the multiview video coding specified in Annex H, bitstreams encoded as specified in Annex | may also contain
sub-bitstreams that conform to this Specification.

A multiview video coding extension with depth information is specified in Annex J. Sub-bitstreams consisting of a texture
base view conform to this Specification, sub-bitstreams consisting of multiple texture views may also conform to Annex H
of this Specification, and sub-bitstreams consisting of one or more texture views and one or more depth views may also
conform to Annex | of this Specification. Enhanced texture view coding that utilizes the associated depth views and
decoding processes for depth views are specified for this extension.

4 Rec. ITU-T H.264 (08/2021)

0.6.1 Predictive coding
This clause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression efficiency.
Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample values from some
previously decoded picture selected by the encoder. In contrast to some other video coding standards, pictures coded using
bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the decoder
for display. The choice is left to the encoder and will depend on the requirements of the application. The decoding order is
specified such that the decoding of pictures that use inter-picture prediction follows later in decoding order than other
pictures that are referenced in the decoding process.

0.6.2 Coding of progressive and interlaced video
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in either
progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of an
interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture time.
Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are typically
coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame coding or
field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within a coded
frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion. Field
coding typically works better when there is fast picture-to-picture motion.

0.6.3 Picture partitioning into macroblocks and smaller partitions
This clause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block of
luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video decoding
process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the quantity
of data needed to represent the data for motion compensation. In this Recommendation | International Standard the inter
prediction process can form segmentations for motion representation as small as 4x4 luma samples in size, using motion
vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter prediction of a sample
block can also involve the selection of the picture to be used as the reference picture from a number of stored previously-
decoded pictures. Motion vectors are encoded differentially with respect to predicted values formed from nearby encoded
motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data stream.
This motion estimation process in the encoder and the selection of whether to use inter prediction for the representation of
each region of the video content is not specified in this Recommendation | International Standard.

0.6.4 Spatial redundancy reduction
This clause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial redundancy. This Recommendation | International Standard
is based on the use of a block-based transform method for spatial redundancy removal. After inter prediction from
previously-decoded samples in other pictures or spatial-based prediction from previously-decoded samples within the
current picture, the resulting prediction residual is split into 4x4 blocks. These are converted into the transform domain
where they are quantized. After quantization many of the transform coefficients are zero or have low amplitude and can
thus be represented with a small amount of encoded data. The processes of transformation and quantization in the encoder
are not specified in this Recommendation | International Standard.

0.7 How to read this Specification
This clause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be read
for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics) specifies

Rec. ITU-T H.264 (08/2021) 5

the order to parse syntax elements from the bitstream. See clauses 7.1 to 7.3 for syntactical order and see clause 7.4 for
semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The actual parsing for most
syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process) specifies how the syntax
elements are mapped into decoded samples. Throughout reading this Specification, the reader should refer to clauses 2
(Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through E, G, and H also form an
integral part of this Recommendation | International Standard.

Annex A specifies fourteen profiles (Baseline, Constrained Baseline, Main, Extended, High, Progressive High,
Constrained High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra), each being tailored to certain application domains, and defines the so-called levels of the profiles.
Annex B specifies syntax and semantics of a byte stream format for delivery of coded video as an ordered stream of bytes.
Annex C specifies the hypothetical reference decoder and its use to check bitstream and decoder conformance. Annex D
specifies syntax and semantics for supplemental enhancement information message payloads. Annex E specifies syntax
and semantics of the video usability information parameters of the sequence parameter set.

Annex G specifies scalable video coding (SVC). The reader is referred to Annex G for the entire decoding process for
SVC, which is specified there with references being made to clauses 2 to 9 and Annexes A to E. Clause G.10 specifies five
profiles for SVC (Scalable Baseline, Scalable Constrained Baseline, Scalable High, Scalable Constrained High, and
Scalable High Intra).

Annex H specifies multiview video coding (MVC) and multi-resolution frame compatible stereo coding (MFC). The reader
is referred to Annex H for the entire decoding process for MVC and MFC, which is specified there with references being
made to clauses 2 to 9 and Annexes A to E. Clause H.10 specifies two profiles for MVVC (Multiview High and Stereo High)
and one profile for MFC (MFC High).

Annex | specifies MV C extensions for inclusion of depth maps, referred to as multiview video coding with depth (MVCD).
The reader is referred to Annex | for the entire decoding process for MVCD, which is specified there with references being
made to clauses 2 to 9, Annexes A to E and Annex H. Clause 1.10 specifies two profiles for MVCD (Multiview Depth
High and MFC Depth High).

Annex J specifies a multiview video coding extension with depth information (3D-AVC). The reader is referred to Annex J
for the entire decoding process for 3D-AVC, which is specified there with references being made to clauses 2 to 9 and
Annexes A to E and H to I. Clause J.10 specifies one profile for 3D-AVC.

Throughout this Specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

1 Scope

This document specifies Recommendation ITU-T H.264 | International Standard ISO/IEC 14496-10 Advanced video
coding.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

— Recommendation ITU-T T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-standard
facilities.

— Recommendation ITU-R BT.2100-2 (2018), Image parameter values for high dynamic range television for
use in production and international programme exchange.

— ISO/IEC 10646:2020, Information technology — Universal coded character set (UCS).

— ISO/IEC 11578:1996, Information technology — Open Systems Interconnection — Remote Procedure Call
(RPC).

— IS0 11664-1:2007, Colorimetry — Part 1: CIE standard colorimetric observers.

— IS0 12232:2006, Photography — Digital still cameras — Determination of exposure index, 1SO speed
ratings, standard output sensitivity, and recommended exposure index.

6 Rec. ITU-T H.264 (08/2021)

3

— ISO/IEC 23001-11 (in force), Information Technology — MPEG Systems Technologies — Part 11: Energy-
efficient media consumption (Green metadata).

Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12

3.13

3.14

3.15

3.16
3.17

access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded
picture. In addition to the primary coded picture, an access unit may also contain one or more redundant coded
pictures, one auxiliary coded picture, or other NAL units not containing slices or slice data partitions of a coded
picture. The decoding of an access unit always results in a decoded picture.

AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions
is non-zero.

adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins
from a bitstream produced by an adaptive binary arithmetic encoding process.

adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this
Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be
decoded using the adaptive binary arithmetic decoding process.

alpha blending: A process not specified by this Recommendation | International Standard, in which an auxiliary
coded picture is used in combination with a primary coded picture and with other data not specified by this
Recommendation | International Standard in the display process. In an alpha blending process, the samples of an
auxiliary coded picture are interpreted as indications of the degree of opacity (or, equivalently, the degrees of
transparency) associated with the corresponding luma samples of the primary coded picture.

arbitrary slice order (ASO): A decoding order of slices in which the macroblock address of the first
macroblock of some slice of a slice group may be less than the macroblock address of the first macroblock of
some other preceding slice of the same slice group or, in the case of a picture that is coded using three separate
colour planes, some other preceding slice of the same slice group within the same colour plane, or in which the
slices of a slice group of a picture may be interleaved with the slices of one or more other slice groups of the
picture or, in the case of a picture that is coded using three separate colour planes, with the slices of one or more
other slice groups within the same colour plane.

auxiliary coded picture: A picture that supplements the primary coded picture that may be used in combination
with other data not specified by this Recommendation | International Standard in the display process. An
auxiliary coded picture has the same syntactic and semantic restrictions as a monochrome redundant coded
picture. An auxiliary coded picture must contain the same number of macroblocks as the primary coded picture.
Aucxiliary coded pictures have no normative effect on the decoding process. See also primary coded picture and
redundant coded picture.

azimuth circle: circle on a sphere connecting all points with the same azimuth value.
NOTE — An azimuth circle is always a great circle like a longitude line on the earth.

B slice: A slice that may be decoded using intra prediction or inter prediction using at most two motion vectors
and reference indices to predict the sample values of each block.

bin: One bit of a bin string.
binarization: A set of bin strings for all possible values of a syntax element.

binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
strings.

bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements
from the binarization of the syntax element.

bi-predictive slice: See B slice.

bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a byte
stream.

block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located immediately
below a corresponding row of a top field.

Rec. ITU-T H.264 (08/2021) 7

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30
3.31
3.32
3.33

3.34

3.35

3.36

3.37

3.38

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order
may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from
the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the
position at which it appears in a bitstream is byte-aligned.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

can: A term used to refer to behaviour that is allowed, but not necessarily required.

category: A number associated with each syntax element. The category is used to specify the allocation of syntax
elements to NAL units for slice data partitioning. It may also be used in a manner determined by the application
to refer to classes of syntax elements in a manner not specified in this Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE — The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.
coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture, but
not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.
coded slice data partition NAL unit: A NAL unit containing a slice data partition.
coded slice NAL unit: A NAL unit containing a slice that is not a slice of an auxiliary coded picture.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed by zero or more non-IDR access units including all subsequent access units up to but not including any
subsequent IDR access unit.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a field
or frame in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that make up a field
or frame in monochrome format.

complementary field pair: A collective term for a complementary reference field pair or a complementary non-
reference field pair.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity and share the same value of the frame_num syntax element,
where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of the frame_num syntax element, where the second field in
decoding order is not an IDR picture and does not include a memory_management_control_operation syntax
element equal to 5.

constituent picture: part of a spatially frame-packed stereoscopic video picture that corresponds to one view, or
a picture itself when frame packing is not in use or the temporal interleaving frame packing arrangement is in
use.

Rec. ITU-T H.264 (08/2021)

3.39

3.40
341

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.60
3.61

3.62

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to
the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a bitstream
and derives decoded pictures from it.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct prediction
modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

display process: A process not specified in this Recommendation | International Standard having, as its input,
the cropped decoded pictures that are the output of the decoding process.

elevation circle: circle on a sphere connecting all points with the same elevation value.
NOTE — An elevation circle is similar to a lattitude line on the earth. Except when the elevation value is zero, an elevation
circle is not a great circle like a longitude circle on the earth.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains
a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by scanning
columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of luma samples in monochrome format or an array of luma samples and two
corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format. A frame consists of two fields,
a top field and a bottom field.

frame macroblock: A macroblock representing samples from the two fields of a coded frame. When
macroblock-adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame
macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame
may be frame macroblocks.

frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to
an inverse transform part of the decoding process.

global coordinate axes: coordinate axes associated with omnidirectional video that are associated with an
externally referenceable position and orientation.

NOTE — The global coordinate axes may correspond to the position and orientation of a device or rig used for
omnidirectional audio/video acquisition as well as the position of an observer's head in the three-dimensional space of
the omnidirectional video rendering environment.

Rec. ITU-T H.264 (08/2021) 9

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70
3.71

3.72

3.73

3.74

3.75
3.76

3.77

3.78

3.79
3.80

3.81

3.82

3.83

3.84

10

great circle: intersection of a sphere and a plane that passes through the centre point of the sphere.
NOTE — A great circle is also known as an orthodrome or Riemannian circle.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of
a bitstream or a decoder.

I slice: A slice that is not an S slice that is decoded using intra prediction only.

informative: A term used to refer to content provided in this Recommendation | International Standard that is
not an integral part of this Recommendation | International Standard. Informative content does not establish any
mandatory requirements for conformance to this Recommendation | International Standard.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture for which the variable IdrPicFlag is equal to 1.
An IDR picture causes the decoding process to mark all reference pictures as "unused for reference” immediately
after the decoding of the IDR picture. All coded pictures that follow an IDR picture in decoding order can be
decoded without inter prediction from any picture that precedes the IDR picture in decoding order. The first
picture of each coded video sequence in decoding order is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an auxiliary
coded picture that may be generated for use in the display process. Interpretation sample values are not used in
the decoding process and have no normative effect on the decoding process.

intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.
intra prediction: A prediction derived from the decoded samples of the same decoded slice.
intra slice: See I slice.

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects of
the definition of each level being in common across different profiles. Individual implementations may, within
specified constraints, support a different level for each supported profile. In a different context, a level is the
value of a transform coefficient prior to scaling (see the definition of transform coefficient level).

list: A one-dimensional array of syntax elements or variables.

list O (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list O (list 1).

list O (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into reference
picture list 0 (list 1).

local coordinate axes: coordinate axes having a specified rotation relationship relative to the global coordinate
axes.

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal related
to the primary colours. The symbol or subscript used for luma is Y or L.
NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light

transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the
symbol Y to avoid confusion with the symbol y as used for vertical location.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture that
has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded using
three separate colour planes. The division of a slice or a macroblock pair into macroblocks is a partitioning.

Rec. ITU-T H.264 (08/2021)

3.85

3.86

3.87

3.88

3.89

3.90

3.91

3.92
3.93

3.94

3.95

3.96

3.97

3.98
3.99
3.100

3.101
3.102
3.103
3.104

3.105

macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some macroblocks
may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left macroblock
in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of the top
macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock pair raster scan
of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is the macroblock
address of the corresponding top macroblock plus 1. The macroblock address of the top macroblock of each
macroblock pair is an even number and the macroblock address of the bottom macroblock of each macroblock
pair is an odd number.

macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x, y). For the
top left macroblock of the picture (x,y) is equal to (0, 0). x is incremented by 1 for each macroblock column
from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by 1 for each
macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y is incremented
by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1 when a macroblock
is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in macroblock-
adaptive frame/field decoding. The division of a slice into macroblock pairs is a partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction for a picture that has three sample arrays or a block of
luma samples resulting from a partitioning of a macroblock for inter prediction for a monochrome picture or a
picture that is coded using three separate colour planes.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the slice
group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the slice
group to which each coded slice group map unit belongs.

matrix: A two-dimensional array of syntax elements or variables.

may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to
provide emphasis.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates
in the decoded picture to the coordinates in a reference picture.

must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an
informative context.

NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.
non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

non-paired non-reference field: A decoded non-reference field that is not part of a complementary
non-reference field pair.

non-paired reference field: A decoded reference field that is not part of a complementary reference field pair.
non-reference field: A field coded with nal_ref_idc equal to 0.
non-reference frame: A frame coded with nal_ref_idc equal to 0.

non-reference picture: A picture coded with nal_ref _idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

note: A term used to prefix informative remarks. This term is used exclusively in an informative context.

Rec. ITU-T H.264 (08/2021) 11

3.106

3.107
3.108
3.109

3.110

3.111

3.112
3.113
3.114
3.115

3.116

3.117
3.118

3.119
3.120

3.121

3.122
3.123
3.124

3.125

3.126
3.127

3.128

3.129

12

omnidirectional video: video content in a format that enables rendering according to the user's viewing
orientation, e.g., if viewed using a head-mounted device, or according to a user's desired viewport, reflecting a
potentially rotated viewing position.

opposite parity: The opposite parity of top is bottom, and vice versa.
output order: The order in which the decoded pictures are output from the decoded picture buffer.

P slice: A slice that is not an SP slice that may be decoded using intra prediction or inter prediction using at
most one motion vector and reference index to predict the sample values of each block.

packed region: region in a region-wise packed picture that is mapped to a projected region according to a region-
wise packing.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as
part of the defined term quantization parameter.

parity: The parity of a field can be top or bottom.
partitioning: The division of a set into subsets such that each element of the set is in exactly one of the subsets.
picture: A collective term for a field or a frame.

picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter_set_id syntax element found in each slice header.

picture order count: A variable that is associated with each coded field and each field of a coded frame and has
a value that is non-decreasing with increasing field position in output order relative to the first output field of the
previous IDR picture in decoding order or relative to the first output field of the previous picture, in decoding
order, that contains a memory management control operation that marks all reference pictures as "unused for
reference".

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

predictive slice: See P slice.

predictor: A combination of specified values or previously decoded sample values or data elements used in the
decoding process of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a bitstream
conforming to this Recommendation | International Standard. The primary coded picture contains all
macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary
coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
projected picture: picture that uses a projection format for omnidirectional video.

projected region: region in a projected picture that is mapped to a packed region according to a region-wise
packing.

projection: specified correspondence between the colour samples of a projected picture and azimuth and
elevation positions on a sphere.

quantization parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first
entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from
left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from
left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

Rec. ITU-T H.264 (08/2021)

3.130

3.131

3.132

3.133

3.134

3.135
3.136

3.137

3.138

3.139

3.140

3.141

3.142

3.143

3.144
3.145

3.146

3.147
3.148

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the
RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of
the decoded pictures represented by the bitstream is achieved after a random access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a redundant
coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all macroblocks
in the primary coded picture. Redundant coded pictures have no normative effect on the decoding process. See
also primary coded picture.

reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field or
field macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame may be used for inter prediction when P, SP, and B slices of a coded frame
are decoded. See also reference picture.

reference index: An index into a reference picture list.

reference picture: A picture with nal_ref _idc not equal to 0. A reference picture contains samples that may be
used for inter prediction in the decoding process of subsequent pictures in decoding order.

reference picture list: A list of reference pictures that is used for inter prediction of a P, B, or SP slice. For the
decoding process of a P or SP slice, there is one reference picture list. For the decoding process of a B slice,
there are two reference picture lists.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP slice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list O is one of two reference
picture lists used for inter prediction for a B slice, with the other being reference picture list 1.

reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1 is
one of two reference picture lists used for inter prediction for a B slice, with the other being reference picture
list 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

region-wise packed picture: decoded picture that contains one or more packed regions.
NOTE — A packed picture may contain a region-wise packing of a projected picture.

region-wise packing: transformation, resizing, and relocation of packed regions of a region-wise packed picture
to remap the packed regions to projected regions of a projected picture.

reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element, are
for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be wused in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number of
zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of transform
coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a humber of
macroblocks.

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample aspect
ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial distance).

scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture
parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.

Rec. ITU-T H.264 (08/2021) 13

3.149

3.150

3.151

3.152

3.153

3.154

3.155

3.156

3.157
3.158

3.159
3.160

3.161
3.162

3.163

3.164

3.165

3.166

3.167

14

shall: A term used to express mandatory requirements for conformance to this Recommendation | International
Standard. When used to express a mandatory constraint on the values of syntax elements or on the results obtained
by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint
is fulfilled. When used in reference to operations performed by the decoding process, any decoding process that
produces identical results to the decoding process described herein conforms to the decoding process
requirements of this Recommendation | International Standard.

should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Recommendation
| International Standard.

Sl slice: A slice that is coded using intra prediction only and using quantization of the prediction samples. An
Sl slice can be coded such that its decoded samples can be constructed identically to an SP slice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within a
particular slice group. For the primary coded picture, the division of each slice group into slices is a partitioning.
Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan within a slice
group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan within the
picture. The macroblock addresses are derived from the first macroblock address in a slice (as represented in
the slice header) and the macroblock to slice group map, and, when a picture is coded using three separate colour
planes, a colour plane identifier.

slice data partition: A non-empty subset of the syntax elements of the slice data syntax structure for a slice. The
syntax elements of a slice data partition are associated with the same category.

slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into slice
groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

slice group map units: The units of the map unit to slice group map.

slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

source: Term used to describe the video material or some of its attributes before encoding.

SP slice: A slice that may be coded using intra prediction or inter prediction with quantization of the prediction
samples using at most one motion vector and reference index to predict the sample values of each block. An SP
slice can be coded such that its decoded samples can be constructed identically to another SP slice or an S slice.

sphere coordinates: azimuth and elevation angles identifying a location of a point on a sphere.

sphere region: region on a sphere, specified either by four great circles or by two azimuth circles and two
elevation circles, or such a region on a rotated sphere after applying yaw, pitch, and roll rotations.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix
to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a new
NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by
the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit
is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock for a picture that has three sample
arrays or an 8x8 luma block of which one corner is located at a corner of the macroblock for a monochrome
picture or a picture that is coded using three separate colour planes.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a sub-macroblock for inter prediction for a picture that has three sample arrays or a block
of luma samples resulting from a partitioning of a sub-macroblock for inter prediction for a monochrome picture
or a picture that is coded using three separate colour planes.

switching I slice: See Sl slice.

Rec. ITU-T H.264 (08/2021)

3.168
3.169
3.170
3.171

3.172

3.173

3.174

3.175

3.176

3.177

3.178

3.179
3.180
3.181

4

switching P slice: See SP slice.
syntax element: An element of data represented in the bitstream.
syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

tilt angle: angle indicating the amount of tilt of a sphere region, measured as the amount of rotation of a sphere
region along the axis originating from the sphere origin passing through the centre point of the sphere region,
where the angle value increases clockwise when looking from the origin towards the positive end of the axis.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately above
the corresponding row of the bottom field.

top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field of the frame that lie within the spatial region of the macroblock pair.
For a frame macroblock pair, the top macroblock represents the samples of the frame that lie within the top half
of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal unique
identifiers.

unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard
and will not have a specified meaning in the future as an integral part of this Recommendation | International
Standard.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

VCL NAL unit: A collective term for coded slice NAL units and coded slice data partition NAL units.
viewport: region of omnidirectional video content suitable for display and viewing by the user.

zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

CABAC
CAVLC
CBR
CPB
DPB
DUT
FIFO
HRD
HSS
IDR
LSB
MB

Context-based Adaptive Binary Arithmetic Coding
Context-based Adaptive Variable Length Coding
Constant Bit Rate

Coded Picture Buffer

Decoded Picture Buffer

Decoder under test

First-In, First-Out

Hypothetical Reference Decoder

Hypothetical Stream Scheduler

Instantaneous Decoding Refresh

Least Significant Bit

Macroblock

Rec. ITU-T H.264 (08/2021) 15

MBAFF Macroblock-Adaptive Frame-Field Coding

MSB Most Significant Bit

MVC Multiview Video Coding

MVCD Multiview Video Coding with Depth
NAL Network Abstraction Layer

RBSP Raw Byte Sequence Payload

SEI Supplemental Enhancement Information
SODB String Of Data Bits

SvC Scalable Video Coding

UuUID Universal Unique ldentifier

VBR Variable Bit Rate

VCL Video Coding Layer

VLC Variable Length Coding

VUI Video Usability Information

5 Conventions

NOTE — The mathematical operators used in this Specification are similar to those used in the C programming language. However,
integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin from

0.

5.1 Arithmetic operators

The following arithmetic operators are defined as follows:

+

*

XY

X

y
if(i)

X%y

Addition
Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
Multiplication, including matrix multiplication

Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting
not intended for interpretation as exponentiation.

Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated to 1
and —7/4 and 7/—4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

The summation of f(i) with i taking all integer values from x up to and including y.

Modulus. Remainder of x divided by y, defined only for integers x and y with x >=0and y > 0.

5.2 Logical operators

The following logical operators are defined as follows:

X && Yy Boolean logical "and" of x and y.

X |y
!

X?y:z

Boolean logical "or" of x and y.
Boolean logical "not".
If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

16 Rec. ITU-T H.264 (08/2021)

5.3 Relational operators

The following relational operators are defined as follows:

Greater than.

Greater than or equal to.
Less than.

Less than or equal to.
Equal to.

Not equal to.

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable),
the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal
to any other value.

54 Bit-wise operators

The following bit-wise operators are defined as follows:

&

X>>y

X <<y

Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of
the integer value. When operating on a binary argument that contains fewer bits than another argument,
the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of
the integer value. When operating on a binary argument that contains fewer bits than another argument,
the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits than
another argument, the shorter argument is extended by adding more significant bits equal to 0.

Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function
is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the right shift
have a value equal to the MSB of x prior to the shift operation.

Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function
is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift have
a value equal to 0.

5.5 Assignment operators

The following arithmetic operators are defined as follows:

++

Assignment operator.

Increment, i.e., Xx++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

Decrement, i.e., x——is equivalent to x = x — 1; when used in an array index, evaluates to the value of the
variable prior to the decrement operation.

Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (=3) is equivalent
to x = x + (-3).
Decrement by amount specified, i.e., x —= 3 is equivalent to x = x — 3, and x —= (—3) is equivalent
tox=x—(-3).

5.6 Range notation

The following notation is used to specify a range of values:

X=Y.zZ

x takes on integer values starting from y to z, inclusive, with X, y, and z being integer numbers.

Rec. ITU-T H.264 (08/2021) 17

5.7 Mathematical functions

The following mathematical functions are defined as follows:

X . x>=0

Abs(x):{_x <D (5-1)

Asin(x): The trigonometric inverse sine function, operating on an argument x that is
in the range of —1.0 to 1.0, inclusive, with an output value in the range of
—n+2 to m+2, inclusive, in units of radians. (5-2)

Atan(x): The trigonometric inverse tangent function, operating on an argument x, with

an output value in the range of —n+2 to n+2, inclusive, in units of radians. (5-3)
Atan (¥) ; x>0
Aan(2) 47 . y <0 g&y =0
= X . 5-4
Atan2(y, x) <Atan(x)_n ; x<0&& y <0 (>-4)
+7 D x==0&& y>=0
_T ; otherwise
2
Ceil(x) the smallest integer greater than or equal to x. (5-5)
Cliplv(x) =Clip3(0, (1 << BitDepthy) — 1, x) (5-6)
Cliplc(x) =Clip3(0, (1 << BitDepthc) — 1, x) (5-7)
X ; Z<X
Clip3(x,y,z2)=1y ; z>y (5-8)
z ; otherwise
Cos(x) the trigonometric cosine function operating on an argument x in units of radians. (5-9)
Floor(x) the greatest integer less than or equal to x. (5-10)
(@%(d/b))*b : e==
InverseRasterScan(a, b, ¢, d, e) = (5-11)
(al(d/b))*c : e==1
Ln(x) returns the natural logarithm of x. (5-12)
Log2(x) returns the base-2 logarithm of x. (5-13)
Log10(x) returns the base-10 logarithm of x. (5-14)
Median(x,y,z)=x+y+z—Min(x, Min(y, z)) — Max(x, Max(y, z)) (5-15)
) X ; X<=Yy
Min(x,y) = (5-16)
y i X>y
X ; X>=Yy
Max(x,y)= (5-17)
y o X<y
Round(x) = Sign(x) * Floor(Abs(x) +0.5) (5-18)

18 Rec. ITU-T H.264 (08/2021)

smmx):{l » x>=0 (5-19)
-1 ; x<0

Sin(x): The trigonometric sine function operating on an argument x in units of radians. (5-20)
Sgrt(x): Returns the square root of x. (5-21)
Tan(x): The trigonometric tangent function operating on an argument x in units of radians. (5-22)

5.8 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
— operations of a higher precedence are evaluated before any operation of a lower precedence,
— operations of the same precedence are evaluated sequentially from left to right.

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher
precedence.

NOTE — For those operators that are also used in the C programming language, the order of precedence used in this Specification is
the same as used in the C programming language.

Table 5-1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)

N g
3

non_

"Ix", "—x" (as a unary prefix operator)

xY

"y Ky " ..é.. "

x/y", "X +y", "X %y
y

"X +y", "X —y" (as a two-argument operator), " Zy: f@i)"

"X<<y, X>>y"

"X <Y X <= Y X Y, X >= Y

"x::y , X!:y"
" & y..

IIX I yII

"X && y"

X1Ly"
"X?y:.z2"

"XZY"XAZY X =y

5.9 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case
letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of coded
representation. The decoding process behaves according to the value of the syntax element and to the values of previously
decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular
(i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables
appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore
characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all
depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later

Rec. ITU-T H.264 (08/2021) 19

syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case
letter are only used within the clause in which they are derived.

In some cases, "mnemonic” names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE — The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions
are specified in clause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit
to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed
as syntax element names and end with left and right round parentheses including zero or more variable names (for
definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in clause 5.7) are described by their
names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore
character, and end with left and right parentheses including zero or more variable names (for definition) or values (for
usage) separated by commas (if more than one variable).

Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first
subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing
order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at
horizontal position x and vertical position y may be denoted either as s[X, y] or as Syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents
an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second
and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different
from zero.

5.10 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement O

else if (condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:
... as follows / ... the following applies:
If condition 0, statement 0

Otherwise, if condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows"
or "... the following applies” with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition Ob)
statement O
else if (condition 1a || condition 1b)

20 Rec. ITU-T H.264 (08/2021)

statement 1
else
statement n

may be described in the following manner:

... as follows / ... the following applies:
— Ifall of the following conditions are true, statement 0
— condition Oa
— condition Ob
— Otherwise, if any of the following conditions are true, statement 1
— condition la
— condition 1b

— Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as:

if(condition 0)
statement 0

if (condition 1)
statement 1

may be described in the following manner:
When condition 0, statement O
When condition 1, statement 1

511 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable explicitly
specified as the input. Each process specification has explicitly specified an output. The output is a variable that can either
be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows:

— If the variables at the invoking and the process specification do not have the same name, the variables are
explicitly assigned to lower case input or output variables of the process specification.

— Otherwise (the variables at the invoking and the process specification have the same name), assignment is
implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring
relationships

6.1 Bitstream formats

This clause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as the
bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This sequence
is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL units in the
NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding order
and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. The

Rec. ITU-T H.264 (08/2021) 21

NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique start code
prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the byte stream
format are outside the scope of this Recommendation | International Standard. The byte stream format is specified in
Annex B.

6.2 Source, decoded, and output picture formats
This clause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:
— Luma (Y) only (monochrome), with or without an auxiliary array.
— Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.
— Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.

— Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX,
also known as XYZ), with or without an auxiliary array.

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays are
referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of the
actual colour representation method in use. The actual colour representation method in use can be indicated in syntax that
is specified in Annex E. The (monochrome) auxiliary arrays, which may or may not be present as auxiliary pictures in a
coded video sequence, are optional for decoding and can be used for such purposes as alpha blending.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling structure,
which is specified through chroma_format_idc and separate_colour_plane_flag. An entry marked as "-" in Table 6-1
denotes an undefined value for SubWidthC or SubHeightC. Other values of chroma_format_idc, SubWidthC, and
SubHeightC may be specified in the future by ITU-T | ISO/IEC.

Table 6-1 — SubWidthC, and SubHeightC values derived from
chroma_format_idc and separate_colour_plane_flag

chroma_format_idc |separate_colour_plane_flag Chroma Format | SubWidthC |SubHeightC
0 0 monochrome - -
1 0 4:2:0 2 2
2 0 4:2:2 2 1
3 0 4:4:4 1 1
3 1 4:4:4 - -

In monochrome sampling there is only one sample array, which is nominally considered the luma array.
In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.
In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies:

— If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the luma
array.

— Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as monochrome
sampled pictures.

The width and height of the luma sample arrays are each an integer multiple of 16. In coded video sequences using 4:2:0
chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In coded video sequences
using 4:2:2 sampling, the width of the chroma sample arrays is an integer multiple of 8 and the height is an integer multiple
of 16. The height of a luma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see
below) is an integer multiple of 32. In coded video sequences using 4:2:0 chroma sampling, the height of each chroma
array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below) is an integer multiple
of 16. The width or height of pictures output from the decoding process need not be an integer multiple of 16 and can be
specified using a cropping rectangle.

22 Rec. ITU-T H.264 (08/2021)

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components is
present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr array,
unless otherwise specified.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to the
same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is half
that of frames coded referring to the same sequence parameter set (see below).

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits used
in the chroma arrays.

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in frames are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in video
usability information (see Annex E).

X X X X X X eee

O O O

X X X X X X

X X X X X X

@) O @) Frame
X X X X X X

X X X X X X

O O O

X X X X X

X Location of luma sample
O Location of chroma sample H.264(09)_F6-1

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or
are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are interleaved.
The first (i.e., top), third, fifth, etc., rows of a decoded frame are the top field rows. The second, fourth, sixth, etc., rows of
a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded frame. When the
top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows (for a top field) or
the odd rows (for a bottom field) of the decoded frame are used.

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in top and bottom fields are shown in Figure 6-2. The nominal vertical sampling relative locations of the
chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the field-sampling
grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted down by one-quarter
luma sample height relative to the field-sampling grid. Alternative chroma sample relative locations may be indicated in
the video usability information (see Annex E).

NOTE — The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the full-
frame sampling grid as shown in Figure 6-1.

Rec. ITU-T H.264 (08/2021) 23

To @) @) ®) Bottom
field field
X X X X X X
X X X X X X
O O @]
X X X X X X
X' Location of luma sample
O Location of chroma sample H.264(09)_F6-2

Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields

When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the corresponding luma samples
and the nominal locations in a frame and in fields are as shown in Figures 6-3 and 6-4, respectively.

24

Frame

R R R R OE
X X X X X X
B ¥R R R
X X X X X X
B ¥ 8 B X
X X X X X X

“e. H.264(09)_F6-3

X Location of luma sample
O Location of chroma sample

Figure 6-3 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

Rec. ITU-T H.264 (08/2021)

B X 8 X & X -
8 X & X &8 X

B X & X 8 X Top Bottom

field 8 X ® X 8 X field

B X ® X 8 X

& X & X & X
X Location of luma sample
O Location of chroma sample H.264(09)_F6-4

Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields

When the value of chroma_format_idc is equal to 3, all array samples are co-sited for all cases of frames and fields and
the nominal locations in a frame and in fields are as shown in Figures 6-5 and 6-6, respectively.

Frame

B 8 8 B &
B 8 8 8 8 &
B 8 3 8 8 &
B 8 8 8 B &
R 8RB R &
B 8 8 8 8B ®

‘e, H.264(09)_F6-5

X Location of luma sample
O Location of chroma sample

Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame

BRI R
B 8 8 8 8 ®&

= & = & = & Top Bottom

field 8 8B 8 8 B ® field

B & 8B B 8 &

B 83 8 8 B &
X Location of luma sample
O Location of chroma sample H.264(09)_F6-6

Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields

Rec. ITU-T H.264 (08/2021) 25

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width and
height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma arrays
for each macroblock, are derived as follows:

— If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane flag is equal to 1, MbWidthC and
MbHeightC are both equal to 0.

— Otherwise, MbWidthC and MbHeightC are derived as

MbWidthC = 16 / SubWidthC (6-1)
MbHeightC = 16 / SubHeightC (6-2)

6.3 Spatial subdivision of pictures and slices

This clause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice is a
sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of macroblock pairs.

Each macroblock is comprised of one 16x16 luma array and, when the chroma sampling format is not equal to 4:0:0 and
separate_colour_plane_flag is equal to 0, two corresponding chroma sample arrays. When separate_colour_plane_flag is
equal to 1, each macroblock is comprised of one 16x16 luma or chroma sample array. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-7.

When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice contains only
macroblocks of one colour component being identified by the corresponding value of colour_plane_id, and each colour
component array of a picture consists of slices having the same colour_plane_id value. Coded slices with different values
of colour_plane_id within an access unit can be interleaved with each other under the constraint that for each value of
colour_plane_id, the coded slice NAL units with that value colour_plane_id shall be in the order of increasing macroblock
address for the first macroblock of each coded slice NAL unit.

NOTE — When separate_colour_plane_flag is equal to 0, each macroblock of a picture is contained in exactly one slice. When

separate_colour_plane_flag is equal to 1, each macroblock of a colour component is contained in exactly one slice (i.e., information
for each macroblock of a picture is present in exactly three slices and these three slices have different values of colour_plane_id).

H.264(09)_F6-7

Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-8. Each macroblock pair consists of two macroblocks.

26 Rec. ITU-T H.264 (08/2021)

A macroblock pair

H.264(09)_F6-8

Figure 6-8 — Partitioning of the decoded frame into macroblock pairs

6.4 Inverse scanning processes and derivation processes for neighbours

This clause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes for
neighbours.

6.4.1 Inverse macroblock scanning process
Input to this process is a macroblock address mbAddr.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock with address mbAddr relative
to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows:
— If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples., 0) (6-3)
y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples,, 1) (6-4)

— Otherwise (MbaffFrameFlag is equal to 1), the following ordered steps are specified:

1. The luma location (xO, yO) is derived by

XO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthinSamples,, 0) (6-5)
yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples., 1) (6-6)

2. Depending on the current macroblock the following applies:

- If the current macroblock is a frame macroblock
x =x0 (6-7)
y =yO + (mbAddr % 2) * 16 (6-8)
- Otherwise (the current macroblock is a field macroblock),
x=x0 (6-9)
y =yO + (mbAddr % 2) (6-10)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-9. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles refer
to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or inverse sub-
macroblock partition scan.

Rec. ITU-T H.264 (08/2021) 27

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.
MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock
type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of a macroblock
with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

Macroblock 0
partitions

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

1 sub-macroblock partition
of 8*8 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 4*8 luma samples and
associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and
associated chroma samples

0 0 1
Sub-macroblock 0 0 1
partitions 1 2 3
H.264(09)_F6-9

Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans,
and sub-macroblock partition scans

6.4.2.1 Inverse macroblock partition scanning process
Input to this process is the index of a macroblock partition mbPartldx.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock partition mbPartldx relative
to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16,0) (6-11)

y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1) (6-12)

6.4.2.2 Inverse sub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition
subMbPartldx.

Output of this process is the location (x, y) of the upper-left luma sample for the sub-macroblock partition subMbPartldx
relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows:
— If mb_type is equal to P_8x8, P_8x8ref0, or B_8x8,

x = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),

SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 0) (6-13)
y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),
SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 1) (6-14)
— Otherwise (mb_type is not equal to P_8x8, P_8x8ref0, or B_8x8),
x = InverseRasterScan(subMbPartldx, 4, 4, 8, 0) (6-15)

28 Rec. ITU-T H.264 (08/2021)

y = InverseRasterScan(subMbPartldx, 4, 4, 8, 1) (6-16)

6.4.3 Inverse 4x4 luma block scanning process
Input to this process is the index of a 4x4 luma block luma4x4Blkldx.

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index
lumadx4Blkldx relative to the upper-left luma sample of the macroblock.

Figure 6-10 shows the scan for the 4x4 luma blocks.

0 114(5

213 6 | 7

8 9 |12 13

10111 |14 | 15

Figure 6-10 — Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BIkldx / 4, 8, 8,16, 0) +
InverseRasterScan(luma4x4BIkldx % 4, 4, 4,8, 0) (6-17)

y = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 1) +
InverseRasterScan(luma4x4BIkldx % 4, 4, 4,8, 1) (6-18)
6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The inverse 4x4 chroma block scanning process is identical to inverse 4x4 luma block scanning process as specified in
clause 6.4.3 when substituting the term "luma" with the term "Cb" or the term "Cr", and substituting the term
"lumadx4BIkldx" with the term "cbh4x4Blkldx" or the term "crdx4BIkldx" in all places in clause 6.4.3.

6.4.5 Inverse 8x8 luma block scanning process
Input to this process is the index of an 8x8 luma block luma8x8BIkldx.

Output of this process is the location (x,y) of the upper-left luma sample for the 8x8 luma block with index
luma8x8Blkldx relative to the upper-left luma sample of the macroblock.

Figure 6-11 shows the scan for the 8x8 luma blocks.

Figure 6-11 — Scan for 8x8 luma blocks

The inverse 8x8 luma block scanning process is specified by:

x = InverseRasterScan(luma8x8BIkldx, 8, 8, 16, 0) (6-19)

y = InverseRasterScan(luma8x8Blkldx, 8, 8, 16, 1) (6-20)

Rec. ITU-T H.264 (08/2021) 29

6.4.6 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The inverse 8x8 chroma block scanning process is identical to inverse 8x8 luma block scanning process as specified in
clause 6.4.5 when substituting the term "luma" with the term "Cb" or the term "Cr", and substituting the term
"luma8x8BIkldx" with the term "cb8x8BIkldx" or the term "cr8x8BIkldx" in all places in clause 6.4.5.

6.4.7 Inverse 4x4 chroma block scanning process
Input to this process is the index of a 4x4 chroma block chroma4x4BIkldx.

Output of this process is the location (x,y) of the upper-left chroma sample for a 4x4 chroma block with index
chroma4x4Blkldx relative to the upper-left chroma sample of the macroblock.

The inverse 4x4 chroma block scanning process is specified by

x = InverseRasterScan(chroma4x4BIkldx, 4, 4, 8,0) (6-21)
y = InverseRasterScan(chroma4x4BIkldx, 4, 4, 8, 1) (6-22)

6.4.8 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE — The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless any of the following conditions are true, in which case the macroblock is
marked as not available:

— mbAddr <0,
— mbAddr > CurrMbAddr,
— the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr.

6.4.9 Derivation process for neighbouring macroblock addresses and their availability
This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are:

— mbAddrA: the address and availability status of the macroblock to the left of the current macroblock,
— mbAddrB: the address and availability status of the macroblock above the current macroblock,

— mbAddrC: the address and availability status of the macroblock above-right of the current macroblock,
— mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-12 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

30 Rec. ITU-T H.264 (08/2021)

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-12 — Neighbouring macroblocks for a given macroblock

Input to the process in clause 6.4.8 is mbAddrA = CurrMbAddr — 1 and the output is whether the macroblock mbAddrA
is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthinMbs is equal to 0.

Input to the process in clause 6.4.8 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in clause 6.4.8 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in clause 6.4.8 is mbAddrD = CurrMbAddr — PicWidthinMbs — 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.10 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.

The outputs of this process are:

— mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair,

— mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair,

— mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the current
macroblock pair,

— mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the current
macroblock pair.

Figure 6-13 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the top
or the bottom macroblock of a macroblock pair.

Rec. ITU-T H.264 (08/2021) 31

mbAddrD mbAddrB mbAddrC

mbAddrA CurrMbAddr or

CurrMbAddr

Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in clause 6.4.8 is mbAddrA =2 * (CurrMbAddr /2 — 1) and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when (CurrMbAddr / 2') % PicWidthInMbs is
equal to 0.

Input to the process in clause 6.4.8 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is whether the
macroblock mbAddrB is available.

Input to the process in clause 6.4.8 is mbAddrC = 2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is whether
the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in clause 6.4.8 is mbAddrD = 2 * (CurrMbAddr / 2 — PicWidthInMbs — 1) and the output is whether
the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2 ') % PicWidthinMbs is equal to 0.

6.4.11 Derivation processes for neighbouring macroblocks, blocks, and partitions

Clause 6.4.11.1 specifies the derivation process for neighbouring macroblocks.

Clause 6.4.11.2 specifies the derivation process for neighbouring 8x8 luma blocks.

Clause 6.4.11.3 specifies the derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3.
Clause 6.4.11.4 specifies the derivation process for neighbouring 4x4 luma blocks.

Clause 6.4.11.5 specifies the derivation process for neighbouring 4x4 chroma blocks.

Clause 6.4.11.6 specifies the derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3.
Clause 6.4.11.7 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BIlkldxN, cb8x8BIkldxN, cr8x8BIkldxN, luma4x4BlkldxN,
cb4x4BIkldxN, crdx4BlkldxN, and chroma4x4BIkldxN for the output. These input and output assignments are used in
clauses 6.4.11.1 t0 6.4.11.7. The variable predPartWidth is specified when Table 6-2 is referred to.

Table 6-2 — Specification of input and output assignments for clauses 6.4.11.1 t0 6.4.11.7

N xD yD
A -1 0

B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-14 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

32 Rec. ITU-T H.264 (08/2021)

D B C

A Current

Macroblock

or Partition
or Block

Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.11.1 Derivation process for neighbouring macroblocks

Outputs of this process are:
— mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status,
— mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as specified by the following ordered steps:

1. The difference of luma location (XD, yD) is set according to Table 6-2.

2. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations with

(XN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.
6.4.11.2 Derivation process for neighbouring 8x8 luma block
Input to this process is an 8x8 luma block index luma8x8BIkldx.
The luma8x8BIkldx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are:

— mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its

availability status,

— luma8x8BIkldxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8Blkldx and its

availability status,

— mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its

availability status,

— luma8x8BlkldxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8BIkldx and its availability

status.
mbAddrN and luma8x8BIkldxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of luma location (XD, yD) is set according to Table 6-2.

2. The luma location (XN, yN) is specified by

XN = (luma8x8BIlkldx % 2) * 8 + xD

yN = (luma8x8Blkldx /2) * 8 + yD

(6-23)

(6-24)

3. Thederivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations with

(XN, yN) as the input and the output is assigned to mbAddrN and (xXW, yW).
4. The variable luma8x8BIkldxN is derived as follows:

— If mbAddrN is not available, luma8x8BIkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the derivation process for 8x8 luma block indices as specified in
clause 6.4.13.3 is invoked with the luma location (xXW, yW) as the input and the output is assigned

to luma8x8BIkldxN.

Rec. ITU-T H.264 (08/2021)

33

6.4.11.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 8x8 chroma block is identical to the derivation process for neighbouring 8x8 luma
block as specified in clause 6.4.11.2 when substituting the term “luma with the term "Cb" or the term "Cr", and substituting
the term "luma8x8Blkldx™ with the term "cb8x8BIlkldx" or the term "cr8x8Blkldx" in all places in clause 6.4.11.2.

6.4.11.4 Derivation process for neighbouring 4x4 luma blocks
Input to this process is a 4x4 luma block index luma4x4Blkldx.

Outputs of this process are:

— mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

— luma4x4BIkldxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4Blkldx and its
availability status,

— mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

— luma4x4BIlkldxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4BIlkldx and its availability
status.

mbAddrN and luma4x4BlkldxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of luma location (XD, yD) is set according to Table 6-2.

2. The inverse 4x4 luma block scanning process as specified in clause 6.4.3 is invoked with luma4x4BIkldx as the
input and (x, y) as the output.

3. The luma location (XN, yN) is specified by:
XN =x+xD (6-25)
yN=y+yD (6-26)
4. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations with
(XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
5. The variable luma4x4BIkIdxN is derived as follows:
— If mbAddrN is not available, luma4x4BIkldxN is marked as not available.

— Otherwise (mbAddrN is available), the derivation process for 4x4 luma block indices as specified in
clause 6.4.13.1 is invoked with the luma location (xXW, yW) as the input and the output is assigned
to lumadx4BIkIdxN.

6.4.11.5 Derivation process for neighbouring 4x4 chroma blocks
This clause is only invoked when ChromaArrayType is equal to 1 or 2.
Input to this process is a 4x4 chroma block index chroma4x4BIkldx.

Outputs of this process are:

— mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and
its availability status,

— chroma4x4BIkldxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index
chroma4x4Blkldx) and its availability status,

— mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its
availability status,

— chroma4x4BlkldxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4Blkldx)
and its availability status.

mbAddrN and chroma4x4BIlkldxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of chroma location (XD, yD) is set according to Table 6-2.

2. Theinverse 4x4 chroma block scanning process as specified in clause 6.4.7 is invoked with chroma4x4Blkldx as
the input and (x, y) as the output.

34 Rec. ITU-T H.264 (08/2021)

3. The chroma location (XN, yN) is specified by
XN =x+xD (6-27)
yN=y+yD (6-28)
4. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for chroma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
5. The variable chroma4x4BIkldxN is derived as follows:
— If mbAddrN is not available, chroma4x4BIkldxN is marked as not available.

— Otherwise (mbAddrN is available), the derivation process for 4x4 chroma block indices as specified in
clause 6.4.13.2 is invoked with the chroma location (xXW, yW) as the input and the output is assigned to
chroma4x4BIlkldxN.

6.4.11.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 4x4 chroma block in 4:4:4 chroma format is identical to the derivation process
for neighbouring 4x4 luma block as specified in clause 6.4.11.4 when substituting the term "luma™ with the term "Cb" or
the term "Cr", and substituting the term "lumadx4BIkldx" with the term "cb4x4BIkldx" or the term "cr4x4Blkldx" in all
places in clause 6.4.11.4.

6.4.11.7 Derivation process for neighbouring partitions
Inputs to this process are:

— amacroblock partition index mbPartldx

— acurrent sub-macroblock type currSubMbType

— asub-macroblock partition index subMbPartldx
Outputs of this process are:

— mbAddrA\mbPartldxA\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx
and its availability status,

— mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and its
availability status,

— mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above of
the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

— mbAddrD\mbPartldxD\subMbPartldxD: specifying the macroblock or sub-macroblock partition to the left-above of
the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldxN (with N being A, B, C, or D) are derived as specified by the following ordered
steps:

1. The inverse macroblock partition scanning process as described in clause 6.4.2.1 is invoked with mbPartldx as
the input and (x, y) as the output.

2. The location of the upper-left luma sample inside a macroblock partition (xS, yS)) is derived as follows:

— If mb_type is equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning process
as described in clause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output.

— Otherwise, (xS,yS) aresetto (0,0).

3. The variable predPartWidth in Table 6-2 is specified as follows:
— If mb_type is equal to P_Skip, B_Skip, or B_Direct_16x16, predPartWidth = 16.
— Otherwise, if mb_type is equal to B_8x8, the following applies:

Rec. ITU-T H.264 (08/2021) 35

— If currSubMbType is equal to B_Direct_8x8, predPartWidth = 16.

NOTE 1 — When currSubMbType is equal to B_Direct_8x8 and direct_spatial_mv_pred_flag is equal to 1,
the predicted motion vector is the predicted motion vector for the complete macroblock.

— Otherwise, predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwisg, if mb_type is equal to P_8x8 or P_8x8ref0,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, predPartWidth = MbPartWidth(mb_type).
4. The difference of luma location (xD, yD) is set according to Table 6-2.

5. The neighbouring luma location (XN, yN) is specified by
XN =x + xS + xD (6-29)
yN=y+yS+yD (6-30)
6. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations with
(XN, yN) as the input and the output is assigned to mbAddrN and (XW, yW).
7. Depending on mbAddrN, the following applies:

— If mbAddrN is not available, the macroblock or sub-macroblock partition
mbAddrN\mbPartldxN\subMbPartldxN is marked as not available.

— Otherwise (mbAddrN is available), the following ordered steps are specified:

a. Let mbTypeN be the syntax element mb_type of the macroblock with macroblock address
mbAddrN and, when mbTypeN is equal to P_8x8, P_8x8ref0, or B_8x8, let subMbTypeN be the
syntax element list sub_mb_type of the macroblock with macroblock address mbAddrN.

b. The derivation process for macroblock and sub-macroblock partition indices as specified in
clause 6.4.13.4 is invoked with the luma location (XW, yW), the macroblock type mbTypeN, and,
when mbTypeN is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock types
subMbTypeN as the inputs and the outputs are the macroblock partition index mbPartldxN and the
sub-macroblock partition index subMbPartldxN.

c. When the partition given by mbPartldxN and subMbPartldxN is not yet decoded, the macroblock
partition mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not
available.

NOTE 2 — The latter condition is, for example, the case when mbPartldx = 2, subMbPartldx = 3,xD = 4,yD = -1,
i.e., when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.12 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock.

Outputs of this process are:

— mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

— (XW, yW): the location (XN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather than
relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components XN, xW, and yN, yW,
respectively. maxW and maxH are derived as follows:

— If this process is invoked for neighbouring luma locations,

maxW = maxH = 16 (6-31)
— Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC (6-32)

maxH = MbHeightC (6-33)

36 Rec. ITU-T H.264 (08/2021)

Depending on the variable MbaffFrameFlag, the neighbouring locations are derived as follows:

— If MbaffFrameFlag is equal to 0, the specification for neighbouring locations in fields and non-MBAFF frames as
described in clause 6.4.12.1 is applied.

— Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring locations in MBAFF frames as described
in clause 6.4.12.2 is applied.

6.4.12.1 Specification for neighbouring locations in fields and non-MBAFF frames
The specifications in this clause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in clause 6.4.9 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (XN, yN).

Table 6-3 — Specification of mbAddrN

XN yN mbAddrN
<0 <0 mbAddrD
<0 0.maxH-1 mbAddrA
0..maxwW -1 <0 mbAddrB
0.maxW -1 0.maxH -1 CurrMbAddr
> maxW -1 <0 mbAddrC
> maxW -1 0.maxH -1 not available
>maxH -1 not available

The neighbouring location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as
XW = (XN + maxW) % maxW (6-34)
yW = (yN + maxH) % maxH (6-35)

6.4.12.2 Specification for neighbouring locations in MBAFF frames
The specifications in this clause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in clause 6.4.10 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

The variable currMbFrameFlag is derived as follows:

— If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1.

— Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal to O.
The variable mblsTopMbFlag is derived as follows:

— If the macroblock with address CurrMbAddr is a top macroblock (i.e., CurrMbAddr % 2 is equal to 0),
mblsTopMbFlag is set equal to 1.

— Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, i.e., CurrMbAddr % 2 is equal to 1),
mblsTopMbFlag is set equal to 0.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:

1. Specification of a macroblock address mbAddrX depending on (XN, yN) and the variables currMbFrameFlag
and mblsTopMbFlag:

2. Depending on the availability of mbAddrX, the following applies:

- If mbAddrX is not available, mbAddrN is marked as not available.

Rec. ITU-T H.264 (08/2021) 37

Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN and

yM depending on (XN, yN), currMbFrameFlag, mblsTopMbFlag, and the variable mbAddrXFrameFlag,
which is derived as follows:

If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1.

Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant for
the current table rows.

Table 6-4 — Specification of mbAddrN and yM

D
‘_C“‘D =) % é
[= o
E|S £ 8
IIE x |% s z
g2l 8 |8 S g
- - - T (.- g s
= = 3| g £ S S S =
1 |mbAddrD mbAddrD +1 |yN
1 mbAddrA yN
' mbAddrA 0 mbAddrA+1 [(yN+maxH)>>1
<0 <0 1 mbAddrD + 1 [2*yN
o |1 |RAdID g mbAddrD yN
0 |mbAddrD mbAddrD+1 |yN
mbAddrA yN
1 |mbAddrA 0 yN% 2== mbAddrA yN >> 1
yN%21=0 mbAddrA+1 |yN>>1
1 1 mbAddrA +1 |yN
0 |mbAddrA yN%2==0 mbAddrA (yN+maxH)>>1
0 [yN%2!1=0 mbAddrA +1 [(yN +maxH) >>1
<0 0.maxH — 1 yN < (maxH/2) |mbAddrA yN <<1
1 |mbAddrA . yN >= (maxH/2)|mbAddrA+1 [(yN <<1)-maxH
0 mbAddrA yN
0 yN < (maxH/2) [mbAddrA (yN<<1)+1
0 |mbAddrA yN >= (maxH /2){mbAddrA+1 [(yN <<1)+1—maxH
mbAddrA+1 |yN
1 |mbAddrB mbAddrB +1 |yN
1 o [currMbAddr CurrMbAddr — 1[yN
—1l< 1 mbAddrB+1 [2*yN
O maxiW =<0 0 1 |mbAddrB 0 mbAddrB yN
0 |mbAddrB mbAddrB+1 |yN
0..maxW — 1]|0..maxH — 1 CurrMbAddr CurrMbAddr yN
1 |mbAddrC mbAddrC+1 |yN
1 {0 [not available not available na
S _1le 1 mbAddrC +1 |2 *yN
MR L0 o |} [mPAddrC o mbAddrC yN
0 |mbAddrC mbAddrC+1 |yN
> maxW — 1 (0..maxH — 1 not available not available na
> maxH -1 not available not available na

The neighbouring luma location (xXW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

XW = (XN + maxW) % maxwW

38

Rec. ITU-T H.264 (08/2021)

(6-36)

yW = (yM + maxH) % maxH (6-37)

6.4.13 Derivation processes for block and partition indices

Clause 6.4.13.1 specifies the derivation process for 4x4 luma block indices.
Clause 6.4.13.2 specifies the derivation process for 4x4 chroma block indices.
Clause 6.4.13.3 specifies the derivation process for 8x8 luma block indices.

Clause 6.4.13.4 specifies the derivation process for macroblock and sub-macroblock partition indices.

6.4.13.1 Derivation process for 4x4 luma block indices
Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.
Output of this process is a 4x4 luma block index luma4x4BIkldx.

The 4x4 luma block index luma4x4BIlkldx is derived by
lumadx4Blkldx =8 * (yP/8)+4* (xP/8)+2* ((yP%8)/4)+((xP%8)/4) (6-38)

6.4.13.2 Derivation process for 4x4 chroma block indices

This clause is only invoked when ChromaArrayType is equal to 1 or 2.

Input to this process is a chroma location (xP, yP) relative to the upper-left chroma sample of a macroblock.
Output of this process is a 4x4 chroma block index chroma4x4BIlkldx.

The 4x4 chroma block index chroma4x4BIlkldx is derived by

chroma4x4Blkldx =2* (yP/4)+(xP/4) (6-39)

6.4.13.3 Derivation process for 8x8 luma block indices
Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.
Outputs of this process is an 8x8 luma block index luma8x8BIlkldx.

The 8x8 luma block index luma8x8BIlkldx is derived by
luma8x8Blkldx =2 * (yP/8) +(xP/8) (6-40)

6.4.13.4 Derivation process for macroblock and sub-macroblock partition indices

Inputs to this process are:

— aluma location (xP, yP) relative to the upper-left luma sample of a macroblock,

— amacroblock type mbType,

— when mbType is equal to P_8x8, P_8x8ref0, or B_8x8, a list of sub-macroblock types subMbType with 4 elements.
Outputs of this process are:

— amacroblock partition index mbPartldx,

— asub-macroblock partition index subMbPartldx.

The macroblock partition index mbPartldx is derived as follows:

— If mbType specifies an | macroblock type, mbPartldx is set equal to 0.

— Otherwise (mbType does not specify an | macroblock type), mbPartldx is derived by

mbPartldx = (16 / MbPartWidth(mbType)) * (yP / MbPartHeight(mbType)) +
(xP / MbPartWidth(mbType)) (6-41)

The sub-macroblock partition index subMbPartldx is derived as follows:
— If mbType is not equal to P_8x8, P_8x8ref0, B_8x8, B_Skip, or B_Direct_16x16, subMbPartldx is set equal to 0.
— Otherwise, if mbType is equal to B_Skip or B_Direct_16x16, subMbPartldx is derived by

Rec. ITU-T H.264 (08/2021) 39

7

7.1

subMbPartldx =2 * ((yP%8)/4)+((xP%8)/4)

Otherwise (mbType is equal to P_8x8, P_8x8ref0, or B_8x8), subMbPartldx is derived by

subMbPartldx = (8 / SubMbPartWidth(subMbType[mbPartldx])) *

((yP % 8) / SubMbPartHeight(subMbType[mbPartldx])) +

((xP % 8) / SubMbPartWidth(subMbType[mbPartldx]))

Syntax and semantics

Method of specifying syntax in tabular form

(6-42)

(6-43)

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be
specified, either directly or indirectly, in other clauses.

NOTE — An actual decoder should implement means for identifying entry points into the bitstream and means to identify and handle
non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies
that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the
syntax element in the bitstream parsing process.

40

C | Descriptor
/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */
syntax_element 3 ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A "while" structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A "do ... while" structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

[* An "if ... else" structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The "else" part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

Rec. ITU-T H.264 (08/2021)

[* A "for" structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows:

— I the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte_aligned() is equal to TRUE.

— Otherwise, the return value of byte aligned() is equal to FALSE.

more_data_in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows:

— If more data follow in the byte stream, the return value of more_data_in_byte stream() is equal to TRUE.
— Otherwise, the return value of more_data_in_byte stream() is equal to FALSE.

more_rbsp_data() is specified as follows:
— If there is no more data in the RBSP, the return value of more_rbsp_data() is equal to FALSE.

— Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in the
RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits() syntax
structure, the following applies:

— If there is more data in an RBSP before the rbsp_trailing_bits() syntax structure, the return value of
more_rbsp_data() is equal to TRUE.

— Otherwise, the return value of more_rbsp_data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or
in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data() is specified as follows:
— If there is more data in an RBSP, the return value of more_rbsp_trailing_data() is equal to TRUE.
— Otherwise, the return value of more_rbsp_trailing_data() is equal to FALSE.

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as specified
in Annex B, next_bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of category 3.
Slice data partition C contains all syntax elements of category 4. The meaning of other category values is not specified.
For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the category value to
be applied is further specified in the text. For syntax structures used within other syntax structures, the categories of all
syntax elements found within the included syntax structure are listed, separated by a vertical bar. A syntax element or
syntax structure with category marked as "All" is present within all syntax structures that include that syntax element or
syntax structure. For syntax structures used within other syntax structures, a numeric category value provided in a syntax
table at the location of the inclusion of a syntax structure containing a syntax element with category marked as "All" is
considered to apply to the syntax elements with category "All".

Rec. ITU-T H.264 (08/2021) 41

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors,
separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy_coding_mode_flag is equal
to 0 and the right descriptor applies when entropy_coding_mode_flag is equal to 1.

42

ae(Vv): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in clause 9.3.

b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return
value of the function read_bits(8).

ce(Vv): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in clause 9.2.

f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for
this descriptor is specified by the return value of the function read_bits(n).

i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent
on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of
the function read_bits(n) interpreted as a two's complement integer representation with most significant bit
written first.

me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in clause 9.1.

se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in clause 9.1.

st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8 (UTF-8)
characters as specified in ISO/IEC 10646. The parsing process is specified as follows: st(v) begins at a byte-
aligned position in the bitstream and reads and returns a series of bytes from the bitstream, beginning at the current
position and continuing up to but not including the next byte-aligned byte that is equal to 0x00, and advances the
bitstream pointer by (stringLength + 1) * 8 bit positions, where stringLength is equal to the number of bytes
returned.

NOTE — The st(v) syntax descriptor is only used in this Specification when the current position in the bitstream is a byte-
aligned position.

te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in clause 9.1.

u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return
value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with most
significant bit written first.

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in clause 9.1.

Rec. ITU-T H.264 (08/2021)

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal_unit(NumBytesInNALunit) { C Descriptor
forbidden_zero_bit All f(1)
nal_ref_idc All u(2)
nal_unit_type All u(s)

NumBytesInRBSP = 0
nalUnitHeaderBytes = 1

if(nal_unit_type == 14 || nal_unit_type == 20 ||
nal_unit_type == 21){
if(nal_unit_type ! = 21)

svc_extension_flag All u(1)
else

avc_3d_extension_flag All u(1)
if(svc_extension_flag) {

nal_unit_header_svc_extension() /* specified in Annex G */ All

nalUnitHeaderBytes += 3

} else if(avc_3d_extension_flag) {
nal_unit_header_3davc_extension() /* specified in Annex J */
nalUnitHeaderBytes += 2

}else {
nal_unit_header_mvc_extension() /* specified in Annex H */ All
nalUnitHeaderBytes += 3

}

¥
for(i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++) {

if(i +2 < NumBytesInNALunit && next_bits(24) == 0x000003) {

rbsp_byte[NumBytesInRBSP++] All b(8)
rbsp_byte[NumBytesInRBSP++] All b(8)
i+=2
emulation_prevention_three_byte /* equal to 0x03 */ All f(8)
} else
rbsp_byte[NumBytesInRBSP++] All b(8)
¥
}

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax

seq_parameter_set_rbsp() { C | Descriptor
seq_parameter_set_data() 0
rbsp_trailing_bits() 0

}

Rec. ITU-T H.264 (08/2021) 43

7.3.2.1.1 Sequence parameter set data syntax

44

seq_parameter_set data() { C Descriptor
profile_idc 0 u(8)
constraint_set0_flag 0 u(1)
constraint_setl flag 0 u(l)
constraint_set2_flag 0 u(1)
constraint_set3 flag 0 u(l)
constraint_set4_flag 0 u(1)
constraint_set5 flag 0 u(l)
reserved_zero_2bits /* equal to 0 */ 0 u(2)
level_idc 0 u(8)
seq_parameter_set_id 0 ue(v)
if(profile_idc == 100 || profile_idc == 110 ||
profile_idc == 122 || profile_idc == 244 || profile_idc == 44 ||
profile_idc == 83 || profile_idc == 86 || profile_idc == 118 ||
profile_idc == 128 || profile_idc == 138 || profile_idc == 139 ||
profile idc == 134 || profile idc == 135){
chroma_format_idc 0 ue(v)
if(chroma_format_idc == 3)
separate_colour_plane_flag 0 u(l)
bit_depth_luma_minus8 0 ue(v)
bit_depth_chroma_minus8 0 ue(v)
gpprime_y_zero_transform_bypass_flag 0 u(l)
seq_scaling_matrix_present_flag 0 u(l)
if(seq_scaling_matrix_present_flag)
for(i=0;i<((chroma_format_idc 1= 3)?8:12);i++){
seq_scaling_list_present_flag[i] 0 u(l)
if(seq_scaling_list_present flag[i])
if(i<6)
scaling_list(ScalingList4x4[i], 16, 0
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i — 6], 64, 0

UseDefaultScalingMatrix8x8Flag[i —6])

Rec. ITU-T H.264 (08/2021)

log2_max_frame_num_minus4 0 ue(v)

pic_order_cnt_type 0 ue(v)
if(pic_order_cnt type == 0)

log2_max_pic_order_cnt_Isb_minus4 0 ue(v)
else if(pic_order_cnt type == 1){

delta_pic_order_always_zero_flag 0 u(l)

offset_for_non_ref pic 0 se(v)

offset_for_top_to_bottom_field 0 se(v)

num_ref frames_in_pic_order_cnt_cycle 0 ue(v)

for(i=0;i<num_ref frames_in_pic_order_cnt_cycle; i++)

offset_for_ref frame[i] 0 se(v)

}
max_num_ref frames 0 ue(v)
gaps_in_frame_num_value_allowed_flag 0 u(l)
pic_width_in_mbs_minusl 0 ue(v)
pic_height_in_map_units_minusl 0 ue(v)
frame_mbs_only_flag 0 u(1)
if('frame_mbs_only_flag)

mb_adaptive_frame_field_flag 0 u(l)

direct_8x8 inference_flag 0 u(l)

frame_cropping_flag 0 u(l)
if(frame_cropping_flag) {
frame_crop_left_offset 0 ue(v)
frame_crop_right_offset 0 ue(v)
frame_crop_top_offset 0 ue(v)
frame_crop_bottom_offset 0 ue(v)
}
vui_parameters_present_flag 0 u(l)
if(vui_parameters_present_flag)
vui_parameters() 0
}
7.3.2.1.1.1 Scaling list syntax
scaling_list(scalingList, sizeOfScalingList, useDefaultScalingMatrixFlag) { C Descriptor
lastScale = 8
nextScale = 8

for(j = 0; j < sizeOfScalingList; j++) {
if(nextScale 1=0) {
delta_scale 0|1 se(v)
nextScale = (lastScale + delta_scale + 256) % 256
useDefaultScalingMatrixFlag = (j == 0 && nextScale == 0)

}
scalingList[j] = (nextScale == 0) ? lastScale : nextScale
lastScale = scalingList[j]
}
}

Rec. ITU-T H.264 (08/2021) 45

7.3.2.1.2 Sequence parameter set extension RBSP syntax

seq_parameter_set_extension_rbsp() { C Descriptor
seq_parameter_set_id 10 ue(v)
aux_format_idc 10 ue(v)
if(aux_format_idc 1= 0) {
bit_depth_aux_minus8 10 ue(v)
alpha_incr_flag 10 u(l)
alpha_opaque_value 10 u(v)
alpha_transparent_value 10 u(v)
¥
additional_extension_flag 10 u(l)
rbsp_trailing_bits() 10
}
7.3.2.1.3 Subset sequence parameter set RBSP syntax
subset_seq_parameter_set_rbsp() { C Descriptor
seq_parameter_set_data() 0
if(profile_idc == 83 || profile_idc == 86) {
seq_parameter_set_svc_extension() /* specified in Annex G */ 0
svc_vui_parameters_present_flag 0 u(l)
if(svc_vui_parameters_present flag == 1)
svC_vui_parameters_extension() /* specified in Annex G */ 0
} else if(profile_idc == 118 || profile_idc == 128 ||
profile_idc == 134){
bit_equal_to_one /*equal to 1 */ 0 f(1)
seq_parameter_set_mvc_extension() /* specified in Annex H */ 0
mvc_vui_parameters_present_flag 0 u(l)
if(mvc_vui_parameters_present_flag == 1)
mvc_vui_parameters_extension() /* specified in Annex H */ 0
} else if(profile_idc == 138 | profile_idc == 135) {
bit_equal_to_one /* equal to 1 */ 0 f(1)
seq_parameter_set_mvcd_extension() /* specified in Annex | */
}else if(profile_idc == 139) {
bit_equal_to_one /* equal to 1 */ 0 (1)
seq_parameter_set_mvcd_extension() /* specified in Annex | */ 0
seq_parameter_set_3davc_extension() /* specified in Annex J */ 0
}
additional_extension2_flag 0 u(1)
if(additional_extension2_flag == 1)
while(more_rbsp_data())
additional_extension2_data_flag 0 u(l)
rbsp_trailing_bits() 0

46

Rec. ITU-T H.264 (08/2021)

7.3.2.2 Picture parameter set RBSP syntax

pic_parameter_set_rbsp() { C Descriptor
pic_parameter_set id 1 ue(v)
seq_parameter_set_id 1 ue(v)
entropy_coding_mode_flag 1 u(l)
bottom_field_pic_order_in_frame_present_flag 1 u(l)
num_slice_groups_minusl 1 ue(v)

if(num_slice_groups_minusl >0) {
slice_group_map_type 1 ue(v)
if(slice_group_map_type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length_minusl[iGroup] 1 ue(v)
else if(slice_group_map_type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minusl; iGroup++) {

top_left[iGroup] 1 ue(v)
bottom_right[iGroup] 1 ue(v)
}
else if(slice_group_map_type == 3 ||
slice_group_map_type == 4 ||
slice_group_map _type == 5){
slice_group_change_direction_flag 1 u(l)
slice_group_change_rate_minusl 1 ue(v)
} else if('slice_group_map_type == 6){
pic_size_in_map_units_minusl 1 ue(v)
for(i=0;i<=pic_size_in_map_units_minusl; i++)
slice_group_id[i] 1 u(v)
¥
}
num_ref_idx_I0_default_active_minusl 1 ue(v)
num_ref_idx_I1_default_active_minusl 1 ue(v)
weighted_pred_flag 1 u(1)
weighted_bipred_idc 1 u(2)
pic_init_gp_minus26 1 se(v)
pic_init_gs_minus26 1 se(v)
chroma_qp_index_offset 1 se(v)
deblocking_filter_control_present_flag 1 u(l)
constrained_intra_pred_flag 1 u(l)
redundant_pic_cnt_present_flag 1 u(l)
if(more_rbsp_data()) {
transform_8x8_mode_flag 1 u(l)
pic_scaling_matrix_present_flag 1 u(1)
if(pic_scaling_matrix_present_flag)
for(i=0;i<6+
((chroma_format_idc !'= 3)?2:6)* transform_8x8 mode_flag;
i++){
pic_scaling_list_present_flag[i] 1 u(l)
if(pic_scaling_list_present flag[i])
if(i<6)

Rec. ITU-T H.264 (08/2021) 47

scaling_list(ScalingList4x4[i], 16, 1
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i — 6], 64, 1
UseDefaultScalingMatrix8x8Flag[i —61])
}
second_chroma_qp_index_offset 1 se(v)
}
rbsp_trailing_bits() 1
}
7.3.2.3 Supplemental enhancement information RBSP syntax
sei_rbsp() { C | Descriptor
do
sei_message() 5
while(more_rbsp_data())
rbsp_trailing_bits() 5
}
7.3.2.3.1 Supplemental enhancement information message syntax
sei_message() { C Descriptor
payloadType =0
while(next_bits(8) == OxFF) {
ff_byte /* equal to OxFF */ 5 f(8)
payloadType += 255
}
last_payload_type_byte 5 u(8)
payloadType += last_payload_type byte
payloadSize =0
while(next_bits(8) == OxFF){
ff_byte /* equal to OxFF */ 5 f(8)
payloadSize += 255
}
last_payload_size byte 5 u(8)
payloadSize += last_payload_size byte
sei_payload(payloadType, payloadSize) 5
}
7.3.2.4 Access unit delimiter RBSP syntax
access_unit_delimiter_rbsp() { C Descriptor
primary_pic_type 6 u(3)
rbsp_trailing_bits() 6

48

}

Rec. ITU-T H.264 (08/2021)

7.3.2.5 End of sequence RBSP syntax

end_of_seq_rbsp() { C | Descriptor
¥
7.3.2.6 End of stream RBSP syntax
end_of_stream_rbsp() { C | Descriptor
¥
7.3.2.7 Filler data RBSP syntax
filler_data_rbsp() { C | Descriptor
while(next_bits(8) == OxFF)
ff_byte /* equal to OXFF */ 9 f(8)
rbsp_trailing_bits() 9
b
7.3.2.8 Slice layer without partitioning RBSP syntax
slice_layer_without_partitioning_rbsp() { C Descriptor
slice_header() 2
slice_data() /* all categories of slice_data() syntax */ 2|3|4
rbsp_slice_trailing_bits() 2
}
7.3.2.9 Slice data partition RBSP syntax
7.3.2.9.1 Slice data partition A RBSP syntax
slice_data_partition_a_layer_rbsp() { C | Descriptor
slice_header() 2
slice_id All ue(v)
slice_data() /* only category 2 parts of slice_data() syntax */ 2
rbsp_slice_trailing_bits() 2
}

Rec. ITU-T H.264 (08/2021)

49

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data_partition_b_layer_rbsp() { C Descriptor
slice_id All ue(v)
if(separate_colour_plane flag == 1)
colour_plane_id All u(2)
if(redundant_pic_cnt_present_flag)
redundant_pic_cnt All ue(v)
slice_data() /* only category 3 parts of slice_data() syntax */ 3
rbsp_slice_trailing_bits() 3
}
7.3.2.9.3 Slice data partition C RBSP syntax
slice_data_partition_c_layer_rbsp() { C Descriptor
slice_id All ue(v)
if(separate_colour_plane flag == 1)
colour_plane_id All u(2)
if(redundant_pic_cnt_present_flag)
redundant_pic_cnt All ue(v)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
rbsp_slice_trailing_bits() 4
}
7.3.2.10 RBSP slice trailing bits syntax
rbsp_slice_trailing_bits() { C | Descriptor
rbsp_trailing_bits() All
if(entropy_coding_mode_flag)
while(more_rbsp_trailing_data())
cabac_zero_word /* equal to 0x0000 */ All f(16)
¥
7.3.2.11 RBSP trailing bits syntax
rbsp_trailing_bits() { C | Descriptor
rbsp_stop_one_bit /* equal to 1 */ All f(1)
while('byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All f(1)

Rec. ITU-T H.264 (08/2021)

7.3.2.12 Prefix NAL unit RBSP syntax

7.3.3

prefix_nal_unit_rbsp() { C | Descriptor
if(svc_extension_flag)
prefix_nal_unit_svc() /* specified in Annex G */ 2
7.3.2.13 Slice layer extension RBSP syntax
slice_layer_extension_rbsp() { C Descriptor
if(svc_extension_flag) {
slice_header_in_scalable_extension() /* specified in Annex G */ 2
if(!slice_skip_flag)
slice_data_in_scalable_extension(') /* specified in Annex G */ 2|3|4
} else if(ave_3d_extension _flag) {
slice_header_in_3davc_extension() /* specified in Annex J */ 2
slice_data_in_3davc_extension() /* specified in Annex J */ 2|34
}else {
slice_header() 2
slice_data() 2|13|4
}
rbsp_slice_trailing_bits() 2
Slice header syntax
slice_header() { C | Descriptor
first_mb_in_slice 2 ue(v)
slice_type 2 ue(v)
pic_parameter_set id 2 ue(v)
if(separate_colour_plane flag == 1)
colour_plane_id 2 u(2)
frame_num 2 u(v)
if('frame_mbs_only flag) {
field_pic_flag 2 u(1)
if(field_pic_flag)
bottom_field_flag 2 u(l)
¥
if(IdrPicFlag)
idr_pic_id 2 ue(v)
if(pic_order_cnt_type == 0){
pic_order_cnt_Isb 2 u(v)
if(bottom_field_pic_order_in_frame_present flag && !field_pic_flag)
delta_pic_order_cnt_bottom 2 se(v)
}
if(pic_order_cnt_type = =1 && !delta_pic_order_always_zero_flag) {
delta_pic_order_cnt[0] 2 se(v)

Rec. ITU-T H.264 (08/2021)

51

52

if(bottom_field_pic_order_in_frame_present flag && !field_pic flag)

delta_pic_order_cnt[1] se(v)
}
if(redundant_pic_cnt_present_flag)
redundant_pic_cnt ue(v)
if(slice_type == B)
direct_spatial_mv_pred_flag u(l)
if(slice_type == P || slice_type == SP || slice_type == B){
num_ref_idx_active_override_flag u(l)
if(num_ref_idx_active_override flag) {
num_ref_idx_I0_active_minusl ue(v)
if(slice_type == B)
num_ref_idx_I1_active_minusl ue(v)
}
}
if(nal_unit_type == 20 || nal_unit_type == 21)
ref_pic_list mvc_maodification() /* specified in Annex H */
else
ref_pic_list_modification()
if((weighted_pred flag && (slice_type == P || slice_type == SP)) ||
(weighted_bipred_idc == 1 && slice_ type == B))
pred_weight_table()
if(nal_ref idc!'=0)
dec_ref_pic_marking()
if(entropy_coding_mode_flag && slice_type !'= | && slice_type !'= SI)
cabac_init_idc ue(v)
slice_gp_delta se(v)
if(slice_type == SP || slice_type == SI){
if(slice_type == SP)
sp_for_switch_flag u(l)
slice_qgs_delta se(v)
}
if(deblocking_filter_control_present flag) {
disable_deblocking_filter_idc ue(v)
if(disable_deblocking_filter_idc !'= 1){
slice_alpha_c0_offset_div2 se(v)
slice_beta_offset_div2 se(v)
}
}
if(num_slice_groups_minusl >0 &&
slice_group_map _type >=3 && slice_group _map_type <=5)
slice_group_change_cycle u(v)

Rec. ITU-T H.264 (08/2021)

7.3.3.1 Reference picture list modification syntax

ref_pic_list_modification() { C Descriptor
if(slice_type %5 !'= 2 && slice_type %5 = 4){
ref_pic_list_modification_flag_l0 2 u(l)
if(ref_pic_list_modification_flag_I0)
do {
modification_of pic_nums_idc 2 ue(v)
if(modification_of _pic_nums_idc == 0 ||
modification_of pic nums idc == 1)
abs_diff_pic_num_minusl 2 ue(v)
else if(modification_of pic_nums_idc == 2)
long_term_pic_num 2 ue(v)
} while(modification_of pic_nums_idc !'= 3)
}
if(slice_type %5 ==1){
ref_pic_list_modification_flag_I1 2 u(l)
if(ref_pic_list_modification_flag 11)
do {
modification_of _pic_nums_idc 2 ue(v)
if(modification_of pic_nums_idc == 0 ||
modification_of pic nums idc == 1)
abs_diff_pic_num_minusl 2 ue(v)
else if(modification_of pic_nums_idc == 2)
long_term_pic_num 2 ue(v)
} while(modification_of pic_nums_idc !'= 3)
¥
}

Rec. ITU-T H.264 (08/2021) 53

7.3.3.2 Prediction weight table syntax

pred_weight_table() { Descriptor
luma_log2_weight_denom ue(v)
if(ChromaArrayType !'= 0)
chroma_log2_weight_denom ue(v)
for(i=0;i<=num_ref _idx_I0_active_minusl; i++) {
luma_weight_I0_flag u(1)
if(luma_weight_10_flag) {
luma_weight_IO[i] se(v)
luma_offset_I0[i] se(v)
}
if(ChromaArrayType = 0) {
chroma_weight_10 flag u(l)
if(chroma_weight_10_flag)
for(j=0;j<2; j++){
chroma_weight_10[i][] se(v)
chroma_offset 10[i][j] se(v)
}
}
}
if(slice_type %5 == 1)
for(i=0;i<=num_ref idx_I1 active_minusl; i++) {
luma_weight 11 flag u(l)
if(luma_weight_I1 flag) {
luma_weight I1]i] se(v)
luma_offset I1[i] se(v)
}
if(ChromaArrayType = 0){
chroma_weight_I1 flag u(l)
if(chroma_weight 11 flag)
for(j=0;j<2;j++){
chroma_weight_11[i][]j] se(v)
chroma_offset I11[i][j] se(v)
}
¥
}

54 Rec. ITU-T H.264 (08/2021)

7.3.3.3 Decoded reference picture marking syntax

dec_ref_pic_marking() { C Descriptor
if(IdrPicFlag) {
no_output_of prior_pics_flag 2|5 u(l)
long_term_reference_flag 2|5 u(1)
}else {
adaptive_ref_pic_marking_mode_flag 2|5 u(1)
if(adaptive_ref_pic_marking_mode_flag)
do {
memory_management_control_operation 2|5 ue(v)
if(memory_management_control_operation == 1 ||
memory_management_control_operation == 3)
difference_of_pic_nums_minusl 2|5 ue(v)
if(memory_management_control_operation == 2)
long_term_pic_num 2|5 ue(v)
if(memory_management_control_operation == 3 ||
memory_management_control_operation == 6)
long_term_frame_idx 2|5 ue(v)
if(memory_management_control_operation == 4)
max_long_term_frame_idx_plusl 2|5 ue(v)
} while(memory_management_control_operation 1= 0)
b
}

Rec. ITU-T H.264 (08/2021) 55

7.3.4 Slice data syntax

slice_data() { C Descriptor

if(entropy_coding_mode_flag)

while('byte_aligned())

cabac_alignment_one_bit 2 f(1)

CurrMbAddr = first_mb_in_slice * (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped = 0

do {

if(slice_type !'= | && slice_type !'= SI)

if(lentropy_coding_mode_flag) {

mb_skip_run 2 ue(v)

prevMbSkipped = (mb_skip_run>0)

for(i=0; i<mb_skip_run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

if(mb_skip_run>0)

moreDataFlag = more_rbsp_data()

}else {

mb_skip_flag 2 ae(v)

moreDataFlag = Imb_skip_flag

}

if(moreDataFlag) {

if(MbaffFrameFlag && (CurrMbAddr% 2 == 0 ||
(CurrMbAddr% 2 == 1 && prevMbSkipped)))

mb_field_decoding_flag 2 u(l) | ae(v)

macroblock_layer() 21314

}

if(lentropy_coding_mode flag)

moreDataFlag = more_rbsp_data()

else {

if(slice_type !'= | && slice_type !'= SlI)

prevMbSkipped = mb_skip_flag

if(MbaffFrameFlag && CurrMbAddr% 2 == 0)

moreDataFlag = 1

else {
end_of slice_flag 2 ae(v)
moreDataFlag = lend_of slice_flag
}
}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

}

56 Rec. ITU-T H.264 (08/2021)

7.3.5

Macroblock layer syntax

macroblock_layer() {

Descriptor

mb_type

ue(v) | ae(v)

if(mb_type == 1_PCM) {

while('byte_aligned())

pcm_alignment_zero_bit

f(1)

for(i=0;i<256;i++)

pcm_sample_lumal i]

u(v)

for(i =0;i<2*MbWidthC * MbHeightC; i++)

pcm_sample_chroma[i |

u(v)

}else {

noSubMbPartSizeL essThan8x8Flag = 1

if(mb_type '= | NxN &&
MbPartPredMode(mb_type, 0) != Intra_16x16 &&
NumMbPart(mb type) == 4){

sub_mb_pred(mb_type)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] !'= B_Direct 8x8) {

if(NumSubMbPart(sub_mb_type[mbPartldx]) > 1)

noSubMbPartSizeLessThan8x8Flag = 0

} else if(Idirect_8x8_inference_flag)

noSubMbPartSizeLessThan8x8Flag = 0

}else {

if(transform_8x8_mode_flag && mb_type == I_NxN)

transform_size_8x8_flag

u(l) | ae(v)

mb_pred(mb_type)

}

if(MbPartPredMode(mb_type, 0) != Intra_16x16) {

coded_block_pattern

me(v) | ae(v)

if(CodedBlockPatternLuma >0 &&
transform_8x8 mode_flag && mb_type = |_NxN &&
noSubMbPartSizeLessThan8x8Flag &&

(mb_type != B_Direct 16x16 || direct 8x8 inference flag))

transform_size 8x8_flag

u(l) | ae(v)

}

if(CodedBlockPatternLuma > 0 || CodedBlockPatternChroma >0 | |

MbPartPredMode(mb_type, 0) == Intra_16x16) {

mb_gp_delta

se(v) | ae(v)

residual(0, 15)

3|4

Rec. ITU-T H.264 (08/2021)

57

7.3.5.1

Macroblock prediction syntax

Descriptor

mb_pred(mb_type) {

if(MbPartPredMode(mb_type, 0) ==
MbPartPredMode(mb_type,0) ==

Intra_4x4 ||
Intra_8x8 ||

MbPartPredMode(mb_type, 0) == Intra_16x16) {
if(MbPartPredMode(mb_type, 0) == Intra_4x4)

for(lumadx4BIkldx=0; luma4x4Blkldx<16; lumadx4Blkldx++) {
2

u(l) | ae(v)

prev_intradx4_pred_mode_flag[luma4x4Blkldx]

if(!prev_intradx4_pred_mode_flag[luma4x4Blkldx])
2

u(3) | ae(v)

rem_intradx4_pred_mode[luma4x4BIkldx]

}
if(MbPartPredMode(mb_type, 0) == Intra_8x8)

for(luma8x8BIkldx=0; luma8x8Blkldx<4; luma8x8BIkldx++) {
2

u(l) | ae(v)

prev_intra8x8_pred_mode_flag[luma8x8Blkldx]

if(!prev_intra8x8_pred_mode_flag[luma8x8Blkldx])

u@) | ae(v)

rem_intra8x8_pred_mode[luma8x8Blkldx]

}
1 || ChromaArrayType ==

if(ChromaArrayType ==

2 | ue(v)|ae(v)

intra_chroma_pred_mode
} else if(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref_idx_l0_active_minusl >0 ||
mb_field_decoding_flag != field_pic_flag) &&

MbPartPredMode(mb_type, mbPartldx) !'= Pred L1)

2 | te(v)|ae(v)

ref_idx_IO[mbPartldx]

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref_idx_I1_active_minusl > 0 ||
mb_field_decoding_flag != field_pic_flag) &&

MbPartPredMode(mb_type, mbPartldx) !'= Pred LO)

2 | te(v)|ae(v)

ref_idx_I1[mbPartldx]

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode (mb_type, mbPartldx) !'= Pred_L1)

2 | se(v)|ae(v)

for(compldx = 0; compldx < 2; compldx++)

mvd_IO[mbPartldx][0][compldx]

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode(mb_type, mbPartldx) !'= Pred LO)

for(compldx = 0; compldx < 2; compldx++)

2 | se(v)|ae(v)

mvd_I1[mbPartldx][0][compldx]

58

Rec. ITU-T H.264 (08/2021)

7.3.5.2 Sub-macroblock prediction syntax

sub_mb_pred(mb_type) { C Descriptor
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
sub_mb_type[mbPartldx] 2 | ue(v)|ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref_idx_l0_active_minusl > 0 ||
mb_field_decoding_flag != field_pic_flag) &&
mb_type !'= P_8x8ref0 &&
sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) !'= Pred L1)

ref_idx_IO[mbPartldx] 2 | te(v)|ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref_idx_I1 active_minusl > 0 ||
mb_field_decoding_flag != field_pic_flag) &&
sub_mb_type[mbPartldx] '= B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) !'= Pred LO)

ref_idx_I1[mbPartldx] 2 | te(v)]ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] !'= B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) !'= Pred L1)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_I0[mbPartldx][subMbPartldx][compldx] 2 | se(v)|ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) !'= Pred LO)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_I1[mbPartldx][subMbPartldx][compldx] 2 | se(v)|ae(v)

Rec. ITU-T H.264 (08/2021)

59

7.3.5.3

60

Residual data syntax

residual(startldx, endldx) {

Descriptor

if(lentropy_coding_mode_flag)

residual_block = residual_block_cavlc

else

residual_block = residual_block_cabac

residual_luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8,
startldx, endldx)

314

Intral6x16DCLevel = i16x16DClevel

Intral6x16ACLevel = i16x16AClevel

LumalLevel4x4 = level4x4

LumaLevel8x8 = level8x8

if(ChromaArrayType == 1 || ChromaArrayType == 2) {

NumC8x8 = 4 / (SubWidthC * SubHeightC)

for(iCbCr = 0; iCbCr < 2; iCbCr++)

if((CodedBlockPatternChroma & 3) && startldx == 0)
/* chroma DC residual present */

residual_block(ChromaDCLevel[iCbCr], 0, 4 * NumC8x8 — 1,
4 * NumC8x8)

314

else

for(i=0;i<4*NumC8x8; i++)

ChromaDCLevel[iCbCr][i]=0

for(iCbCr = 0; iCbCr < 2; iCbCr++)

for(i8x8 = 0; i8x8 < NumC8x8; i8x8++)

for(i4x4 = 0; i4x4 < 4; i4x4++)

if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */

residual_block(ChromaACLevel[iCbCr][i8x8 * 4+ i4x4],
Max(0, startldx — 1), endldx — 1, 15)

314

else

for(i=0;i<15;i++)

ChromaACLevel[iChCr][18x8 * 4 + i4x4][] =0

} else if(ChromaArrayType == 3){

residual_luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8,
startldx, endldx)

314

Cbintral6x16DCLevel = i16x16DClevel

Cbintral6x16ACLevel = i16x16AClevel

CbLevel4x4 = level4x4

CbLevel8x8 = level8x8

residual_luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8,
startldx, endldx)

3|4

Crintral6éx16DCLevel = i16x16DClevel

Crintral6x16ACLevel = i16x16AClevel

CrLevel4x4 = level4x4

CrLevel8x8 = level8x8

Rec. ITU-T H.264 (08/2021)

7.3.5.3.1 Residual luma syntax

residual_luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8, C | Descriptor
startldx, endldx) {
if(startldx == 0 && MbPartPredMode(mb_type, 0) == Intra_16x16)
residual_block(i16x16DClevel, 0, 15, 16) 3
for(i8x8 = 0; i8x8 < 4; i8x8++)
if(Itransform_size_8x8 flag || 'entropy_coding_mode_flag)
for(i4x4 = 0; i4x4 < 4; i4xd++) {
if(CodedBlockPatternLuma & (1 <<i8x8))
if(MbPartPredMode(mb_type, 0) == Intra_16x16)
residual_block(i16x16AClevel[i8x8 * 4 +i4x4], 3
Max(0, startldx — 1), endldx — 1, 15)
else
residual_block(level4x4[i8x8 * 4 + i4x4], 34
startldx, endldx, 16)
else if(MbPartPredMode(mb_type, 0) == Intra_16x16)
for(i=0;i<15;i++)
i16x16AClevel[i8x8 * 4 +i4x4 J[i]=0
else
for(i=0;i<16;i++)
level4x4[i8x8 * 4 +i4x4][1]=0
if(lentropy_coding_mode_flag && transform_size 8x8 flag)
for(i=0;i<16;i++)
level8x8[i8x8][4 * i+ i4x4] = leveldx4[i8x8 * 4 +idx4][1]
}
else if(CodedBlockPatternLuma & (1 <<i8x8))
residual_block(level8x8[i8x8], 4 * startldx, 4 * endldx + 3, 64) 3|4
else
for(i =0;i<64;i++)
level8x8[i8x8][i]=0
}
7.3.5.3.2 Residual block CAVLC syntax
residual_block_cavlc(coeffLevel, startldx, endldx, maxNumCoeff) { C Descriptor
for(i=0; i < maxNumCoeff; i++)
coeffLevel[i]=0
coeff_token 3|4 ce(v)
if(TotalCoeff(coeff token)>0){
if(TotalCoeff(coeff_token) > 10 && TrailingOnes(coeff token) < 3)
suffixLength = 1
else
suffixLength =0
for(i=0; i< TotalCoeff(coeff_token); i++)
if(i < TrailingOnes(coeff token)) {
trailing_ones_sign_flag 314 u(1)

levelVal[i]=1- 2 * trailing_ones_sign_flag

}else {

Rec. ITU-T H.264 (08/2021)

61

level_prefix

3|4

ce(v)

levelCode = (Min(15, level_prefix) << suffixLength)

if(suffixLength >0 || level_prefix >=14){

level suffix

314

u(v)

levelCode += level _suffix

}

if(level_prefix >= 15 && suffixLength == 0)

levelCode += 15

if(level_prefix >= 16)

levelCode += (1 << ('level_prefix —3)) — 4096

if(i == TrailingOnes(coeff token) &&
TrailingOnes(coeff token) < 3)

levelCode += 2

if(levelCode %2 == 0)

levelVal[i]=(levelCode +2)>>1

else

levelVal[i]=(—levelCode —1)>>1

if(suffixLength == 0)

suffixLength =1

if(Abs(levelVal[i]) > (3 << (suffixLength—1)) &&
suffixLength <6)

suffixLength++

}

if(TotalCoeff(coeff_token) <endldx —startldx + 1) {

total_zeros

3|4

ce(v)

zerosLeft = total_zeros

} else

zerosLeft=0

for(i=0; i< TotalCoeff(coeff_token) —1; i++) {

if(zerosLeft >0) {

run_before

314

ce(v)

runVal[i] = run_before

} else

runVal[i]=0

zerosLeft = zerosLeft — runVal[i]

}

runVal[TotalCoeff(coeff_token) — 1] = zerosLeft

coeffNum = -1

for(i = TotalCoeff(coeff token)—1;i>=0;i——){

coeffNum +=runVal[i] +1

coeffLevel[startldx + coeffNum] = levelVal[i]

}

}

}

62 Rec. ITU-T H.264 (08/2021)

7.3.5.3.3 Residual block CABAC syntax

residual_block_cabac(coeffLevel, startldx, endldx, maxNumCoeff) { C Descriptor
if(maxNumCoeff != 64 || ChromaArrayType == 3)
coded_block_flag 3|4 ae(v)

for(i = 0; i < maxNumCoeff; i++)
coeffLevel[i]=0

if(coded_block flag) {
numCoeff = endldx + 1

i = startldx
while(i <numCoeff—1) {
significant_coeff_flag[i] 314 ae(v)
if(significant_coeff flag[i]) {
last_significant_coeff_flag[i] 3|4 ae(v)

if(last_significant_coeff flag[i])
numCoeff =i+ 1

¥

i++
¥
coeff_abs_level_minusl[numCoeff — 1] 3|4 ae(v)
coeff_sign_flag[numCoeff — 1] 3|4 ae(v)

coeffLevel[numCoeff —1] =
(coeff_abs_level_minusl[numCoeff—1]+1)*
(1—2*coeff_sign_flag[numCoeff —11])

for(i = numCoeff — 2; i >= startldx; i——)
if(significant_coeff_flag[i]) {
coeff_abs_level_minusl[i] 3|4 ae(v)
coeff_sign_flag[i] 3|4 ae(v)

coeffLevel[i] = (coeff_abs_level minusl[i]+1)*
(1-—2*coeff_sign flag[i])

7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
clause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified
in the table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation | International
Standard.

7.4.1 NAL unit semantics

NOTE 1 — The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified
outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

Rec. ITU-T H.264 (08/2021) 63

nal_ref_idc not equal to O specifies that the content of the NAL unit contains a sequence parameter set, a sequence
parameter set extension, a subset sequence parameter set, a picture parameter set, a slice of a reference picture, a slice data
partition of a reference picture, or a prefix NAL unit preceding a slice of a reference picture.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2 to 9, nal_ref_idc equal to 0 for a NAL unit containing a slice or slice data partition
indicates that the slice or slice data partition is part of a non-reference picture.

nal_ref_idc shall not be equal to O for sequence parameter set or sequence parameter set extension or subset sequence
parameter set or picture parameter set NAL units. When nal_ref _idc is equal to 0 for one NAL unit with nal_unit_type in
the range of 1 to 4, inclusive, of a particular picture, it shall be equal to 0 for all NAL units with nal_unit_type in the range
of 1 to 4, inclusive, of the picture.

nal_ref_idc shall not be equal to 0 for NAL units with nal_unit_type equal to 5.
nal_ref_idc shall be equal to O for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or 12.
nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from the
syntax and semantics of the associated RBSP data structure. nal_unit_type shall not be equal to 3 or 4 unless at least one
syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal_unit_type and not categorized as "All".

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, VCL and non-VCL NAL units are specified in Table 7-1 in the column labelled
"Annex A NAL unit type class". For coded video sequences conforming to one or more of the profiles specified in Annex G
that are decoded using the decoding process specified in Annex G and for coded video sequences conforming to one or
more of the profiles specified in Annex H that are decoded using the decoding process specified in Annex H, VCL and
non-VCL NAL units are specified in Table 7-1 in the column labelled "Annex G and Annex H NAL unit type class". The
entry "suffix dependent” for nal_unit_type equal to 14 is specified as follows:

— If the NAL unit directly following in decoding order a NAL unit with nal_unit_type equal to 14 is a NAL unit with
nal_unit_type equal to 1 or 5, the NAL unit with nal_unit_type equal to 14 is a VCL NAL unit.

— Otherwise (the NAL unit directly following in decoding order a NAL unit with nal_unit_type equal to 14 is a NAL
unit with nal_unit_type not equal to 1 or 5), the NAL unit with nal_unit_type equal to 14 is a non-VCL NAL unit.
Decoders shall ignore (remove from the bitstream and discard) the NAL unit with nal_unit_type equal to 14 and the
NAL unit directly following (in decoding order) the NAL unit with nal_unit_type equal to 14.

64 Rec. ITU-T H.264 (08/2021)

Table 7-1 — NAL unit type codes, syntax element categories, and NAL unit type classes

nal_unit_type Content of NAL unit and RBSP C Annex A Annex G Annex |
syntax structure and and
Annex H Annex J
NAL unit NAL unit NAL unit
type class type class type class
0 Unspecified non-VCL non-VCL non-VCL
1 Coded slice of a non-IDR picture 2,3,4 VCL VCL VCL
slice_layer without partitioning_rbsp()
2 Coded slice data partition A 2 VCL not applicable | not applicable
slice_data_partition_a_layer rbsp()
3 Coded slice data partition B 3 VCL not applicable | not applicable
slice_data_partition b _layer rbsp()
4 Coded slice data partition C 4 VCL not applicable | not applicable
slice_data_partition_c_layer_rbsp()
5 Coded slice of an IDR picture 2,3 VCL VCL VCL
slice _layer without partitioning_rbsp()
6 Supplemental enhancement information 5 non-VCL non-VCL non-VCL
(SEI)
sei_rbsp()
7 Sequence parameter set 0 non-VCL non-VCL non-VCL
seq_parameter _set rbsp()
8 Picture parameter set 1 non-VCL non-VCL non-VCL
pic_parameter_set rbsp()
9 Access unit delimiter 6 non-VCL non-VCL non-VCL
access_unit_delimiter_rbsp()
10 End of sequence 7 non-VCL non-VCL non-VCL
end_of seq_rbsp()
11 End of stream 8 non-VCL non-VCL non-VCL
end_of stream rbsp()
12 Filler data 9 non-VCL non-VCL non-VCL
filler_data_rbsp()
13 Sequence parameter set extension 10 non-VCL non-VCL non-VCL
seq_parameter_set extension_rbsp()
14 Prefix NAL unit 2 non-VCL suffix suffix
prefix_nal_unit_rbsp() dependent dependent
15 Subset sequence parameter set 0 non-VCL non-VCL non-VCL
subset_seq_parameter _set_rbsp()
16 Depth parameter set 11 non-VCL non-VCL non-VCL
depth_parameter _set rbsp()
17..18 Reserved non-VCL non-VCL non-VCL
19 Coded slice of an auxiliary coded 2,3,4 | non-VCL non-VCL non-VCL
picture without partitioning
slice_layer without partitioning_rbsp()
20 Coded slice extension 2,3,4 | non-VCL VCL VCL
slice_layer_extension_rbsp()
21 Coded slice extension for a depth view 2,3,4 | non-VCL non-VCL VCL
component or a 3D-AVC texture view
component
slice_layer extension_rbsp()
22.23 Reserved non-VCL non-VCL VCL
24..31 Unspecified non-VCL non-VCL non-VCL

When NAL units with nal_unit_type equal to 13 or 19 are present in a coded video sequence, decoders shall either perform
the (optional) decoding process specified for these NAL units or shall ignore (remove from the bitstream and discard) the
contents of these NAL units.

Decoders that conform to one or more of the profiles specified in Annex A rather than the profiles specified in Annexes G
or H shall ignore (remove from the bitstream and discard) the contents of all NAL units with nal_unit_type equal to 14,

15, or 20.

Rec. ITU-T H.264 (08/2021)

65

NAL units that use nal_unit_type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.
NOTE 2 — NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this Recommendation | International Standard. Since different applications might use NAL unit types
0 and 24..31 for different purposes, particular care must be exercised in the design of encoders that generate NAL units with
nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, and in the design of decoders that interpret the content of NAL units
with nal_unit_type equal to 0 or in the range of 24 to 31, inclusive.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of

nal_unit_type.
NOTE 3 — This requirement allows future definition of compatible extensions to this Recommendation | International Standard.
NOTE 4 — In previous editions of this Recommendation | International Standard, the NAL unit types 13..15 and 19..20 (or a subset
of these NAL unit types) were reserved and no decoding process for NAL units having these values of nal_unit_type was specified.
In later editions of this Recommendation | International Standard, currently reserved values of nal_unit_type might become non-
reserved and a decoding process for these values of nal_unit_type might be specified. Encoders should take into consideration that
the values of nal_unit_type that were reserved in previous editions of this Recommendation | International Standard might be ignored
by decoders.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of
an IDR picture NAL unit. The variable IdrPicFlag is specified as
IdrPicFlag = ((nal_unit_type ==5) ? 1 :0) (7-1)

When the value of nal_unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall not
contain NAL units with nal_unit_type in the range of 1 to 4, inclusive. For coded video sequences conforming to one or
more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2 to 9, such a
picture is referred to as an IDR picture.

NOTE 5 — Slice data partitioning cannot be used for IDR pictures.

svc_extension_flag indicates whether a nal_unit_header_svc_extension() or nal_unit_header_mvc_extension() will
follow next in the syntax structure.

When svc_extension_flag is not present, the value of svc_extension_flag is inferred to be equal to 0.

The value of svc_extension_flag shall be equal to 1 for coded video sequences conforming to one or more profiles specified
in Annex G. Decoders conforming to one or more profiles specified in Annex G shall ignore (remove from the bitstream
and discard) NAL units for which nal_unit_type is equal to 14 or 20 and for which svc_extension_flag is equal to 0.

The value of svc_extension_flag shall be equal to 0 for coded video sequences conforming to one or more profiles specified
in Annex H. Decoders conforming to one or more profiles specified in Annex H shall ignore (remove from the bitstream
and discard) NAL units for which nal_unit_type is equal to 14 or 20 and for which svc_extension_flag is equal to 1.

The value of svc_extension_flag shall be equal to 0 for coded video sequences conforming to one or more profiles specified
in Annex |. Decoders conforming to one or more profiles specified in Annex | shall ignore (remove from the bitstream and
discard) NAL units for which nal_unit_type is equal to 14, 20, or 21 and for which svc_extension_flag is equal to 1.

The value of svc_extension_flag shall be equal to 0 for coded video sequences conforming to one or more profiles specified
in Annex J. Decoders conforming to one or more profiles specified in Annex J shall ignore (remove from the bitstream
and discard) NAL units for which nal_unit_type is equal to 14 or 20 and for which svc_extension_flag is equal to 1.

avc_3d_extension flag indicates for NAL units having nal_unit type equal to 21 whether a
nal_unit_header_mvc_extension() or nal_unit_header_3davc_extension() will follow next in the syntax structure.

When avc_3d_extension_flag is not present, the value of avc_3d_extension_flag is inferred to be equal to 0.

The value of DepthFlag is specified as follows:
DepthFlag = (nal_unit_type = 21)?0: (avc_3d_extension_flag ? depth_flag: 1) (7-2)

The value of avc_3d_extension_flag shall be equal to 0 for coded video sequences conforming to one or more profiles
specified in Annex I. Decoders conforming to one or more profiles specified in Annex | shall ignore (remove from the
bitstream and discard) NAL units for which nal_unit_type is equal to 21 and for which avc_3d_extension_flag is equal
to 1.

rbsp_byte[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows:
— If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.

66 Rec. ITU-T H.264 (08/2021)

— Otherwise, the RBSP contains the SODB as follows:

1) The first byte of the RBSP contains the first (most significant, left-most) eight bits of the SODB; the next byte
of the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) The rbsp_trailing_bits() syntax structure is present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contain the remaining bits of the SODB
(if any).
ii) The next bit consists of a single bit equal to 1 (i.e., rbsp_stop_one_bit).

iii) When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more zero-valued bits
(i.e., instances of rbsp_alignment_zero_bit) are present to result in byte alignment.

3) One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after the
rbsp_trailing_bits() at the end of the RBSP.

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures
shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP syntax
structures to the NAL units shall be as specified in Table 7-1.

NOTE 6 — When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the
bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1,
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for
the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
— 0x000000
— 0x000001
— 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur
at any byte-aligned position:

0x00000300

0x00000301

0x00000302

0x00000303

NOTE 7 — When nal_unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of the
above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element
emulation_prevention_three_byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)
This clause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within
a NAL unit,

— toenable identification of the end of the SODB within the NAL unit by searching the RBSP for the rbsp_stop_one_bit
starting at the end of the RBSP,

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero_word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
1. The RBSP data is searched for byte-aligned bits of the following binary patterns:

‘00000000 00000000 000000xx" (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns:
‘00000000 00000000 00000011 000000xX',

Rec. ITU-T H.264 (08/2021) 67

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in
a cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a
byte-aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence
0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits
with the binary patterns specified above.

2. The resulting sequence of bytes is then prefixed as follows:

— If nal_unit_type is not equal to 14 or 20, the sequence of bytes is prefixed with the first byte of the NAL unit
containing the syntax elements forbidden_zero_bit, nal_ref_idc, and nal_unit_type, where nal_unit_type
indicates the type of RBSP data structure the NAL unit contains.

— Otherwise (nal_unit_type is equal to 14 or 20), the sequence of bytes is prefixed with the first four bytes of
the NAL unit, where the first byte contains the syntax elements forbidden zero_bit, nal_ref idc, and
nal_unit_type and the following three bytes contain the syntax structure nal_unit_header_svc_extension().
The syntax element nal_unit_type in the first byte indicates the presence of the syntax structure
nal_unit_header_svc_extension() in the following three bytes and the type of RBSP data structure the NAL
unit contains.

The process specified above results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that
— no byte-aligned start code prefix is emulated within the NAL unit,

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences
This clause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL
units. Within a NAL unit, the syntax in clauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. Decoders
shall be capable of receiving NAL units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

This clause specifies the activation process of picture and sequence parameter sets for coded video sequences that conform
to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2 to 9.
NOTE 1 — The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information

from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed "out-
of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice data
partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not active at
the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active at any given
moment during the operation of the decoding process, and the activation of any particular picture parameter set RBSP
results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set _id) is not active and it is referred to by
a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter_set_id), it is activated.
This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the activation of
another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of pic_parameter_set id,
shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set
RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded picture
unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another coded picture.

When a picture parameter set NAL unit with a particular value of pic_parameter_set_id is received, its content replaces
the content of the previous picture parameter set NAL unit, in decoding order, with the same value of pic_parameter_set_id
(when a previous picture parameter set NAL unit with the same value of pic_parameter_set id was present in the
bitstream).
NOTE 2 — A decoder must be capable of simultaneously storing the contents of the picture parameter sets for all values of
pic_parameter_set_id. The content of the picture parameter set with a particular value of pic_parameter_set_id is overwritten when
a new picture parameter set NAL unit with the same value of pic_parameter_set_id is received.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs
or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP is initially
considered not active at the start of the operation of the decoding process. At most one sequence parameter set RBSP is

68 Rec. ITU-T H.264 (08/2021)

considered active at any given moment during the operation of the decoding process, and the activation of any particular
sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq_parameter_set_id) is not already active and it is
referred to by activation of a picture parameter set RBSP (using that value of seq_parameter_set _id) or is referred to by an
SEI NAL unit containing a buffering period SEI message (using that value of seq_parameter_set_id), it is activated. This
sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the activation of
another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id,
shall be available to the decoding process prior to its activation. An activated sequence parameter set RBSP shall remain
active for the entire coded video sequence.

NOTE 3 — Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must

remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period SEI
message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq_parameter_set_id for the active sequence parameter set

RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set RBSP for the

coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL NAL

unit and the first SEI NAL unit containing a buffering period SEI message (when present) of another coded video sequence.
NOTE 4 — If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified in
this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that these
constraints are obeyed.

When a sequence parameter set NAL unit with a particular value of seq_parameter_set _id is received, its content replaces
the content of the previous sequence parameter set NAL unit, in decoding order, with the same value of
seq_parameter_set_id (when a previous sequence parameter set NAL unit with the same value of seq_parameter_set_id
was present in the bitstream).

NOTE 5 — A decoder must be capable of simultaneously storing the contents of the sequence parameter sets for all values of

seq_parameter_set_id. The content of the sequence parameter set with a particular value of seq_parameter_set_id is overwritten
when a new sequence parameter set NAL unit with the same value of seq_parameter_set_id is received.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence parameter
set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP, the sequence
parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP with the same value
of seq_parameter_set_id. When a sequence parameter set RBSP is present that is not followed by a sequence parameter
set extension RBSP with the same value of seq_parameter_set_id prior to the activation of the sequence parameter set
RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered not present for the active
sequence parameter set RBSP.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of variables
derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax elements are
expressions of constraints that apply only to the active sequence parameter set and the active picture parameter set. If any
sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements shall have values that
would conform to the specified constraints if it were activated by reference in an otherwise-conforming bitstream. If any
picture parameter set RBSP is present that is not ever activated in the bitstream, its syntax elements shall have values that
would conform to the specified constraints if it were activated by reference in an otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding process
for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless otherwise
specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences
A bitstream conforming to this Recommendation | International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more of
the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2 to 9, the order of NAL
units and coded pictures and their association to access units is described in clause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

It is a requirement of bitstream conformance that, when two consecutive access units in decoding order within a coded
video sequence both contain non-reference pictures, the value of picture order count for each coded field or field of a coded

Rec. ITU-T H.264 (08/2021) 69

frame in the first such access unit shall be less than or equal to the value of picture order count for each coded field or field
of a coded frame in the second such access unit.

It is a requirement of bitstream conformance that, when present, an access unit following an access unit that contains an
end of sequence NAL unit shall be an IDR access unit.

Itis a requirement of bitstream conformance that, when an SEI NAL unit contains data that pertain to more than one access
unit (for example, when the SEI NAL unit has a coded video sequence as its scope), it shall be contained in the first access
unit to which it applies.

It is a requirement of bitstream conformance that, when an end of stream NAL unit is present in an access unit, this access
unit shall be the last access unit in the bitstream and the end of stream NAL unit shall be the last NAL unit in that access
unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

This clause specifies the order of NAL units and coded pictures and association to access unit for coded video sequences
that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2to 9.

NOTE 1 — Some bitstreams that conform to profiles specified in Annexes G or H may violate the NAL unit order specified in this
clause. Conditions under which such a violation of the NAL unit order occurs are specified in clauses G.7.4.1.2.3 and H.7.4.1.2.3.

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
clause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of a
new access unit:

— access unit delimiter NAL unit (when present),

— sequence parameter set NAL unit (when present),

— picture parameter set NAL unit (when present),

— SEI NAL unit (when present),

— NAL units with nal_unit_type in the range of 14 to 18, inclusive (when present),

— first VCL NAL unit of a primary coded picture (always present).

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in clause 7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit:

— When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

— When any SEI NAL units are present, they shall precede the primary coded picture.

— When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message shall
be the first SEI message payload of the first SEI NAL unit in the access unit.

— The primary coded picture shall precede the corresponding redundant coded pictures.

— When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant_pic_cnt.

— When asequence parameter set extension NAL unit is present, it shall be the next NAL unit after a sequence parameter
set NAL unit having the same value of seq_parameter_set_id as in the sequence parameter set extension NAL unit.

— When one or more coded slice of an auxiliary coded picture without partitioning NAL units is present, they shall
follow the primary coded picture and all redundant coded pictures (if any).

— When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any) and all coded slice of an auxiliary coded picture without partitioning NAL units (if any).

— When an end of stream NAL unit is present, it shall be the last NAL unit.

— NAL units having nal_unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first VCL
NAL unit of the primary coded picture.

70 Rec. ITU-T H.264 (08/2021)

NOTE 2 — Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot follow
the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a new access
unit.

NOTE 3 — When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in
the coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the range of 12 to 18,
inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7-1.

start

I
v

Access unit delimiter

A

A4

A 4

Primary coded picture

N|
v
Redundant coded picture

&
<

A 4

Auxiliary coded picture

<&
€

A 4

End of sequence

&
<

End of stream

[«
v H.264(09)_F7-1
end

Figure 7-1 — Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8,
or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This clause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL NAL
unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified in
Annex A and are decoded using the decoding process specified in clauses 2 to 9.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access unit
shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of
the previous access unit in one or more of the following ways:

— frame_num differs in value. The value of frame_num used to test this condition is the value of frame_num that appears
in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for subsequent
use in the decoding process due to the presence of memory_management_control_operation equal to 5.

NOTE 1 — A consequence of the above statement is that a primary coded picture having frame_num equal to 1 cannot
contain a memory_management_control_operation equal to 5 unless some other condition listed below is fulfilled for the
next primary coded picture that follows after it (if any).

— pic_parameter_set_id differs in value.

Rec. ITU-T H.264 (08/2021) 71

field_pic_flag differs in value.
bottom_field_flag is present in both and differs in value.
nal_ref_idc differs in value with one of the nal_ref_idc values being equal to 0.

pic_order_cnt_type is equal to O for both and either pic_order_cnt_lIsb differs in value, or delta_pic_order_cnt_bottom
differs in value.

pic_order_cnt type is equal tol for both and either delta pic_order cnt[0] differs in value, or
delta_pic_order_cnt[1] differs in value.

IdrPicFlag differs in value.

IdrPicFlag is equal to 1 for both and idr_pic_id differs in value.

NOTE 2 — Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g., an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures

This clause specifies the order of VCL NAL units and association to coded pictures for coded video sequences that conform
to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2 to 9.

Each VCL NAL unit is part of a coded picture.

The order of the VCL NAL units within a coded IDR picture is constrained as follows:

If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

Otherwise (arbitrary slice order is not allowed), the following applies:

— If separate_colour_plane_flag is equal to 0, coded slice of an IDR picture NAL units of a slice group shall not
be interleaved with coded slice of an IDR picture NAL units of another slice group and the order of coded slice
of an IDR picture NAL units within a slice group shall be in the order of increasing macroblock address for the
first macroblock of each coded slice of an IDR picture NAL unit of the particular slice group.

— Otherwise (separate_colour_plane_flag is equal to 1), coded slice of an IDR picture NAL units of a slice group
for a particular value of colour_plane_id shall not be interleaved with coded slice of an IDR picture NAL units
of another slice group with the same value of colour_plane_id and the order of coded slices of IDR picture NAL
units within a slice group for a particular value of colour_plane_id shall be in the order of increasing macroblock
address for the first macroblock of each coded slice of an IDR picture NAL unit of the particular slice group
having the particular value of colour_plane_id.

NOTE 1 — When separate_colour_plane_flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane_id is not constrained.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows:

72

If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded slice
data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit with a
particular value of slice_id shall precede any present coded slice data partition B NAL unit with the same value of
slice_id. A coded slice data partition A NAL unit with a particular value of slice_id shall precede any present coded
slice data partition C NAL unit with the same value of slice_id. When a coded slice data partition B NAL unit with a
particular value of slice_id is present, it shall precede any present coded slice data partition C NAL unit with the same
value of slice_id.

Otherwise (arbitrary slice order is not allowed), the following applies:

— If separate_colour_plane_flag is equal to 0, coded slice of a non-IDR picture NAL units or coded slice data
partition NAL units of a slice group shall not be interleaved with coded slice of a non-IDR picture NAL units
or coded slice data partition NAL units of another slice group and the order of coded slice of a non-IDR picture
NAL units or coded slice data partition A NAL units within a slice group shall be in the order of increasing
macroblock address for the first macroblock of each coded slice of a non-IDR picture NAL unit or coded slice
data partition A NAL unit of the particular slice group. A coded slice data partition A NAL unit with a particular
value of slice_id shall immediately precede any present coded slice data partition B NAL unit with the same
value of slice_id. A coded slice data partition A NAL unit with a particular value of slice_id shall immediately
precede any present coded slice data partition C NAL unit with the same value of slice_id, when a coded slice
data partition B NAL unit with the same value of slice_id is not present. When a coded slice data partition B
NAL unit with a particular value of slice_id is present, it shall immediately precede any present coded slice data
partition C NAL unit with the same value of slice_id.

Rec. ITU-T H.264 (08/2021)

— Otherwise (separate_colour_plane_flag is equal to 1), coded slice of a non-IDR picture NAL units or coded slice
data partition NAL units of a slice group for a particular value of colour_plane_id shall not be interleaved with
coded slice of a non-1DR picture NAL units or coded slice data partition NAL units of another slice group with
the same value of colour_plane_id and the order of coded slice of a non-IDR picture NAL units or coded slice
data partition A NAL units within a slice group for particular value of colour_plane_id shall be in the order of
increasing macroblock address for the first macroblock of each coded slice of a non-IDR picture NAL unit or
coded slice data partition A NAL unit of the particular slice group having the particular value of colour_plane_id.
A coded slice data partition A NAL unit associated with a particular value of slice_id and colour_plane_id shall
immediately precede any present coded slice data partition B NAL unit with the same value of slice_id and
colour_plane_id. A coded slice data partition A NAL unit associated with a particular value of slice_id and
colour_plane_id shall immediately precede any present coded slice data partition C NAL unit with the same
value of slice_id and colour_plane_id, when a coded slice data partition B NAL unit with the same value of
slice_id and colour_plane_id is not present. When a coded slice data partition B NAL unit with a particular
value of slice_id and colour_plane_id is present, it shall immediately precede any present coded slice data
partition C NAL unit with the same value of slice_id and colour_plane_id.

NOTE 2 — When separate_colour_plane_flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane_id is not constrained.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to O or in the range of 24 to 31, inclusive, which are unspecified, may be present in
the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 20 to 23, inclusive, shall not precede the first VCL NAL unit of the primary
coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
7.4.2.1 Sequence parameter set RBSP semantics

7.4.2.1.1 Sequence parameter set data semantics
profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.

constraint_set0_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in clause A.2.1.
constraint_set0_flag equal to O indicates that the coded video sequence may or may not obey all constraints specified in
clause A.2.1.

constraint_setl flag equal to 1 indicates that the coded video sequence obeys all constraints specified in clause A.2.2.
constraint_setl_flag equal to O indicates that the coded video sequence may or may not obey all constraints specified in
clause A.2.2.

constraint_set2_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in clause A.2.3.
constraint_set2_flag equal to O indicates that the coded video sequence may or may not obey all constraints specified in
clause A.2.3.

NOTE 1 - When one or more than one of constraint_set0_flag, constraint_setl_flag, or constraint_set2_flag are equal to 1, the coded

video sequence must obey the constraints of all of the indicated subclauses of clause A.2. When profile_idc is equal to 44, 100, 110,
122, or 244, the values of constraint_set0_flag, constraint_setl_flag, and constraint_set2_flag must all be equal to 0.

constraint_set3_flag is specified as follows:

— If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11, constraint_set3_flag equal to 1 indicates that the
coded video sequence obeys all constraints specified in Annex A for level 1b and constraint_set3 flag equal to 0
indicates that the coded video sequence obeys all constraints specified in Annex A for level 1.1.

— Otherwise, if profile_idc is equal to 100 or 110, constraint_set3 flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in Annex A for the High 10 Intra profile, and constraint_set3 flag equal to
0 indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise, if profile_idc is equal to 122, constraint_set3 flag equal to 1 indicates that the coded video sequence obeys
all constraints specified in Annex A for the High 4:2:2 Intra profile, and constraint_set3_flag equal to 0 indicates that
the coded video sequence may or may not obey these corresponding constraints.

— Otherwise, if profile_idc is equal to 44, constraint_set3_flag shall be equal to 1. When profile_idc is equal to 44, the
value of 0 for constraint_set3 flag is forbidden.

— Otherwise, if profile_idc is equal to 244, constraint_set3 flag equal to 1 indicates that the coded video sequence obeys
all constraints specified in Annex A for the High 4:4:4 Intra profile, and constraint_set3_flag equal to 0 indicates that
the coded video sequence may or may not obey these corresponding constraints.

Rec. ITU-T H.264 (08/2021) 73

— Otherwise (profile_idc is equal to 66, 77, or 838 and level_idc is not equal to 11, or profile_idc is not equal to 66, 77,
88, 100, 110, 122, 244, or 44), the value of 1 for constraint_set3 flag is reserved for future use by ITU-T | ISO/IEC.
constraint_set3_flag shall be equal to 0 for coded video sequences with profile_idc equal to 66, 77, or 88 and level_idc
not equal to 11 and for coded video sequences with profile_idc not equal to 66, 77, 88, 100, 110, 122, 244, or 44 in
bitstreams conforming to this Recommendation | International Standard. Decoders shall ignore the value of
constraint_set3 flag when profile_idc is equal to 66, 77, or 88 and level_idc is not equal to 11 or when profile_idc is
not equal to 66, 77, 88, 100, 110, 122, 244, or 44.

constraint_set4 flag is specified as follows:

— If profile_idc is equal to 77, 88, 100, or 110, constraint set4 flag equal to 1 indicates that the value of
frame_mbs_only flag is equal to 1. constraint_set4 flag equal to O indicates that the value of frame_mbs_only flag
may or may not be equal to 1.

— Otherwise, if profile_idc is equal to 118, 128, or 134, constraint_set4 flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in clause H.10.1.1. constraint_set4 flag equal to O indicates that the coded
video sequence may or may not obey the constraints specified in clause H.10.1.1.

— Otherwise (profile_idc is not equal to 77, 88, 100, 110, 118, 128, or 134), the value of 1 for constraint_set4 flag is
reserved for future use by ITU-T | ISO/IEC. constraint_set4_flag shall be equal to 0 for coded video sequences with
profile_idc not equal to 77, 88, 100, 110, 118, 128, or 134 in bitstreams conforming to this Recommendation |
International Standard. Decoders shall ignore the value of constraint_set4 flag when profile_idc is not equal to 77,
88, 100, 110, 118, 128, or 134.

constraint_set5_flag is specified as follows:

- If profile_idc is equal to 77, 88, or 100, constraint_set5 flag equal to 1 indicates that B slice types are not present in
the coded video sequence. constraint_set5 flag equal to 0 indicates that B slice types may or may not be present in the
coded video sequence.

— Otherwise, if profile_idc is equal to 118, constraint_set5 flag equal to 1 indicates that the coded video sequence obeys
all constraints specified in clause H.10.1.2 and constraint_set5_flag equal to 0 indicates that the coded video sequence
may or may not obey all constraints specified in clause H.10.1.2.

- Otherwise (profile_idc is not equal to 77, 88, 100, or 118), the value of 1 for constraint_set5_flag is reserved for future
use by ITU-T | ISO/IEC. constraint_set5_flag shall be equal to 0 when profile_idc is not equal to 77, 88, 100, or 118
in bitstreams conforming to this Recommendation | International Standard. Decoders shall ignore the value of
constraint_set5_flag when profile_idc is not equal to 77, 88, 100, or 118.

NOTE 2 — For a coded video sequence conforming to both the Multiview High and Stereo High profiles, a corresponding
combination would use profile_idc equal to 118 and constraint_set5_flag equal to 1.

reserved_zero_2bits shall be equal to 0. Other values of reserved_zero_2bits may be specified in the future by ITU-T |
ISO/IEC. Decoders shall ignore the value of reserved_zero_2bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
NOTE 3 — When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence parameter

set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set_id.

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2. The value of
chroma_format_idc shall be in the range of 0 to 3, inclusive. When chroma_format_idc is not present, it shall be inferred
to be equal to 1 (4:2:0 chroma format).

separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are coded
separately. separate_colour_plane_flag equal to 0 specifies that the colour components are not coded separately. When
separate_colour_plane_flag is not present, it shall be inferred to be equal to 0. When separate_colour_plane_flag is equal
to 1, the primary coded picture consists of three separate components, each of which consists of coded samples of one
colour plane (Y, Cb or Cr) that each use the monochrome coding syntax. In this case, each colour plane is associated with
a specific colour_plane_id value.

NOTE 4 — There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For

example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from monochrome
pictures having different values of colour_plane_id for inter prediction.

Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as follows:
— If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc.
— Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0.

74 Rec. ITU-T H.264 (08/2021)

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantization
parameter range offset QpBdOffsety, as specified by

BitDepthy = 8 + bit_depth_luma_minus8 (7-3)
QpBdOffsety = 6 * bit_depth_luma_minus8 (7-4)

When bit_depth_luma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_luma_minus8 shall be in the
range of 0 to 6, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma
guantization parameter range offset QpBdOffsetc, as specified by

BitDepthc = 8 + bit_depth_chroma_minus8 (7-5)
QpBdOffsetc = 6 * bit_depth_chroma_minus8 (7-6)

When bit_depth_chroma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_chroma_minus8 shall be in
the range of 0 to 6, inclusive.
NOTE 5 — The value of bit_depth_chroma_minus8 is not used in the decoding process when ChromaArrayType is equal to 0. In
particular, when separate_colour_plane_flag is equal to 1, each colour plane is decoded as a distinct monochrome picture using the

luma component decoding process (except for the selection of scaling matrices) and the luma bit depth is used for all three colour
components.

The variable RawMbBits is derived as

RawMbBits = 256 * BitDepthy + 2 * MbWidthC * MbHeightC * BitDepthc (7-7)

gpprime_y_zero_transform_bypass_flag equal to 1 specifies that, when QP’y is equal to 0, a transform bypass operation
for the transform coefficient decoding process and picture construction process prior to deblocking filter process as
specified in clause 8.5 shall be applied. gpprime_y_zero_transform_bypass_flag equal to 0 specifies that the transform
coefficient decoding process and picture construction process prior to deblocking filter process shall not use the transform
bypass operation. When gpprime_y_zero_transform_bypass_flag is not present, it shall be inferred to be equal to 0.

seq_scaling_matrix_present_flag equal to 1 specifies that the flags seq_scaling_list_present flag[i] for i=0..7 or
i =0..11 are present. seq_scaling_matrix_present_flag equal to 0 specifies that these flags are not present and the sequence-
level scaling list specified by Flat_4x4 16 shall be inferred for i = 0..5 and the sequence-level scaling list specified by
Flat_8x8_16 shall be inferred for i = 6..11. When seq_scaling_matrix_present_flag is not present, it shall be inferred to be
equal to 0.

The scaling lists Flat_4x4 16 and Flat_8x8_ 16 are specified as follows:
Flat_4x4 16[k]=16, withk=0..15, (7-8)
Flat_8x8 16[k] =16, withk=0..63. (7-9)
seq_scaling_list_present flag[i] equal to 1 specifies that the syntax structure for scaling list i is present in the sequence
parameter set. seq_scaling_list_present_flag[i] equal to 0 specifies that the syntax structure for scaling list i is not present

in the sequence parameter set and the scaling list fall-back rule set A specified in Table 7-2 shall be used to infer the
sequence-level scaling list for index i.

Rec. ITU-T H.264 (08/2021) 75

Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule

Value of Mnemonic name | Block MB Component Scaling list Scaling list Default
scaling list size prediction fall-back rule | fall-back rule scaling list
index type set A set B
0 Sl_4x4 Intra_Y 4x4 Intra Y default sequence-level | Default_4x4 Intra
scaling list scaling list
1 Sl_4x4 Intra_Cb 4x4 Intra Cb scaling list scaling list Default_4x4_Intra
fori=0 fori=0
2 S|_4x4 _Intra_Cr 4x4 Intra Cr scaling list scaling list Default_4x4_Intra
fori=1 fori=1
3 SI_4x4_Inter_Y 4x4 Inter Y default sequence-level | Default_4x4_Inter
scaling list scaling list
4 Sl_4x4_Inter_Cb 4x4 Inter Ch scaling list scaling list Default_4x4_Inter
fori=3 fori=3
5 Sl_4x4 Inter_Cr 4x4 Inter Cr scaling list scaling list Default_4x4_Inter
fori=4 fori=4
6 SI_8x8 Intra_Y 8x8 Intra Y default sequence-level | Default_8x8_Intra
scaling list scaling list
7 SI_8x8_Inter_Y 8x8 Inter Y default sequence-level | Default_8x8_Inter
scaling list scaling list
8 Sl_8x8_Intra_Cb 8x8 Intra Ch scaling list scaling list Default_8x8_Intra
fori=6 fori=6
9 Sl_8x8 _Inter_Cb 8x8 Inter Ch scaling list scaling list Default_8x8_Inter
fori=7 fori=7
10 Sl _8x8_Intra_Cr 8x8 Intra Cr scaling list scaling list Default_8x8 Intra
fori=8 fori=8
11 SI_8x8_Inter_Cr 8x8 Inter Cr scaling list scaling list Default_8x8_lInter
fori=9 fori=9

Table 7-3 specifies the default scaling lists Default_4x4 Intra and Default_4x4 Inter. Table 7-4 specifies the default
scaling lists Default_8x8_Intra and Default_8x8_Inter.

Table 7-3 — Specification of default scaling lists Default_4x4 Intra and Default_4x4_Inter

idx 0|12 |3|4|5|6|7|8|9|10(11|12|13|14 |15
Default_4x4_Intra[idx] | 6 |13 13|20 |20 |20 |28 |28 |28 |28 |32 |32 |32 |37 |37]42
Default_4x4 Inter[idx] | 10 | 14 | 14 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 27 | 27 | 27 | 30 | 30 | 34

76 Rec. ITU-T H.264 (08/2021)

Table 7-4 — Specification of default scaling lists Default_8x8 Intra and Default_8x8_Inter

idx 01,234 |5|6|7|8|9|10|11 12|13 |14 |15

Default_8x8_Intra[idx] |6 | 10|10 |13 |11 |13 |16 |16 |16 |16 | 18|18 |18 | 18| 18 | 23

Default_8x8_Inter[idx] | 9|13 |13 | 15|13 |15 |17 |17 |17 |17 |19 |19 |19 |19 |19 | 21

Table 7-4 (continued) — Specification of default scaling lists Default_8x8 Intra and Default_8x8 Inter

idx 16 |17 |18 |19 |20 |21 | 22 |23 |24 | 25|26 |27 |28 |29 |30 |31

Default_8x8_Intra[idx] |23 |23 |23 |23 |23 |25|25|25|25|25| 25|25 |27 |27 |27 27

Default_8x8_Inter[idx] |21 |21 |21 |21 |21 |22 |22 |22 |22 | 22|22 |22 |24 |24 |24 | 24

Table 7-4 (continued) — Specification of default scaling lists Default_8x8 Intra and Default_8x8_Inter

idx 32 |33(34|35|36|37|38|39 |40 |41 |42 |43 |44 |45 |46 |47

Default_8x8_Intra[idx] |27 |27 |27 |27 |29 | 29|29 |29 29|29 |29 31|31 313131

Default_8x8_Inter[idx] |24 |24 |24 |24 | 25|25 |25 | 25|25 |25 25|27 |27 |27 |27 |27

Table 7-4 (concluded) — Specification of default scaling lists Default_8x8 Intra and Default_8x8_Inter

idx 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |56 | 57|58 |59 | 60 | 61 | 62 | 63

Default_8x8_Intra[idx] |31 33|33 |33|33|33|36|36|36|36|33|38|38|40|40]42

Default_8x8_Inter[idx] |27 |28 | 28 |28 |28 | 28 |30 |30 |30 |30 (32|32|32|33|33]|35

log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7_ 1 O)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in clause 8.2.1). The value of
pic_order_cnt_type shall be in the range of 0 to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following:

— an access unit containing a non-reference frame followed immediately by an access unit containing a non-reference
picture,

— two access units each containing a field with the two fields together forming a complementary non-reference field
pair followed immediately by an access unit containing a non-reference picture,

— an access unit containing a non-reference field followed immediately by an access unit containing another non-
reference picture that does not form a complementary non-reference field pair with the first of the two access units.

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding
process for picture order count as specified in clause 8.2.1 as follows:

MaxPicOrderCntLsbh = 2(log2_max_pic_order_cnt_lIsb_minus4 + 4) (7_1 1)

The value of log2_max_pic_order_cnt_Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always_zero_flag equal to 1 specifies that delta_pic_order_cnt[0] and delta_pic_order_cnt[1] are not
present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order_always_zero_flag equal
to 0 specifies that delta_pic_order_cnt[0] is present in the slice headers of the sequence and delta_pic_order_cnt[1] may
be present in the slice headers of the sequence.

Rec. ITU-T H.264 (08/2021) 77

offset_for_non_ref pic is used to calculate the picture order count of a non-reference picture as specified in clause 8.2.1.
The value of offset_for_non_ref_pic shall be in the range of —2%! + 1 to 2% — 1, inclusive.

offset_for_top_to_bottom_field is used to calculate the picture order count of a bottom field as specified in clause 8.2.1.
The value of offset_for_top_to_bottom_field shall be in the range of —2% + 1 to 23! — 1, inclusive.

num_ref frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
clause 8.2.1. The value of num_ref_frames_in_pic_order_cnt_cycle shall be in the range of 0 to 255, inclusive.

offset_for_ref frame[i] is an element of a list of num_ref frames_in_pic_order_cnt_cycle values used in the decoding
process for picture order count as specified in clause 8.2.1. The value of offset_for_ref frame[i] shall be in the range of
—231 + 1 to 2% — 1, inclusive.

When pic_order_cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for(i=0; i <num_ref _frames_in_pic_order_cnt_cycle; i++)
ExpectedDeltaPerPicOrderCntCycle += offset_for_ref frame[i] (7-12)

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of any
picture in the coded video sequence. max_num_ref_frames also determines the size of the sliding window operation as
specified in clause 8.2.5.3. The value of max_num_ref frames shall be in the range of 0 to MaxDpbFrames (as specified
in clause A.3.1 or A.3.2), inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame_num as specified in clause 7.4.3 and the
decoding process in case of an inferred gap between values of frame_num as specified in clause 8.2.5.2.

pic_width_in_mbs_minusl plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as
PicWidthInMbs = pic_width_in_mbs_minusl + 1 (7-13)
The variable for picture width for the luma component is derived as

PicWidthInSamples, = PicWidthInMbs * 16 (7-14)

The variable for picture width for the chroma components is derived as

PicWidthInSamplesc = PicWidthinMbs * MbWidthC (7-15)

pic_height_in_map_units_minusl plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightinMapUnits and PicSizelnMapUnits are derived as
PicHeightInMapUnits = pic_height_in_map_units_minusl + 1 (7-16)
PicSizeInMapUnits = PicWidthInMbs * PicHeightinMapUnits (7-17)

frame_mbs_only_flag equal to O specifies that coded pictures of the coded video sequence may either be coded fields or
coded frames. frame_mbs_only_flag equal to 1 specifies that every coded picture of the coded video sequence is a coded
frame containing only frame macroblocks.

The allowed range of values for pic_width_in_mbs_minusl, pic_height_in_map_units_minusl, and frame_mbs_only_flag
is specified by constraints in Annex A.

Depending on frame_mbs_only_flag, semantics are assigned to pic_height_in_map_units_minusl as follows:

— If frame_mbs_only_flag is equal to 0, pic_height_in_map_units_minusl plus 1 is the height of a field in units of
macroblocks.

— Otherwise (frame_mbs_only_flag is equal to 1), pic_height_in_map_units_minusl plus 1 is the height of a frame in
units of macroblocks.

The variable FrameHeightinMbs is derived as

FrameHeightInMbs = (2 — frame_mbs_only_flag) * PicHeightinMapUnits (7-18)

78 Rec. ITU-T H.264 (08/2021)

mb_adaptive_frame_field_flag equal to O specifies no switching between frame and field macroblocks within a picture.
mb_adaptive_frame_field_flag equal to 1 specifies the possible use of switching between frame and field macroblocks
within frames. When mb_adaptive_frame_field_flag is not present, it shall be inferred to be equal to 0.

direct_8x8 inference_flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16 and B_Direct 8x8 as specified in clause 8.4.1.2. When frame_mbs_only flag is equal to 0,
direct_8x8_inference_flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence parameter
set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:
— If ChromaArrayType is equal to 0, CropUnitX and CropUnitY are derived as:

CropUnitX = 1 (7-19)
CropUnitY = 2 — frame_mbs_only_flag (7-20)

— Otherwise (ChromaArrayType is equal to 1, 2, or 3), CropUnitX and CropUnitY are derived as:

CropUnitX = SubWidthC (7-21)
CropUnitY = SubHeightC * (2 — frame_mbs_only flag) (7-22)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from
CropUnitX * frame_crop_left_offset to PicWidthInSamples, — (CropUnitX * frame_crop_right_offset + 1) and vertical
frame coordinates from CropUnitY * frame_crop_top_offset to (16 * FrameHeightinMbs) —
(CropUnitY * frame_crop_bottom_offset + 1), inclusive. The value of frame_crop_left_offset shall be in the range of 0
to (PicWidthinSamples. / CropUnitX) — (frame_crop_right_offset +1), inclusive; and the value of
frame_crop_top_offset shall be in the vrange of O to (16 * FrameHeightinMbs/CropUnitY)—
(frame_crop_bottom_offset + 1), inclusive.

When frame_cropping_flag is equal to 0, the wvalues of frame_crop_left offset, frame_crop_right offset,
frame_crop_top_offset, and frame_crop_bottom_offset shall be inferred to be equal to 0.

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the samples
having frame coordinates (x / SubWidthC, y / SubHeightC), where (x, y) are the frame coordinates of the specified luma
samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E is
present. vui_parameters_present_flag equal to O specifies that the vui_parameters() syntax structure as specified in
Annex E is not present.

7.4.2.1.1.1 Scaling list semantics

delta_scale is used to derive the j-th element of the scaling list for j in the range of 0 to sizeOfScalingList — 1, inclusive.
The value of delta_scale shall be in the range of —128 to +127, inclusive.

When useDefaultScalingMatrixFlag is derived to be equal to 1, the scaling list shall be inferred to be equal to the default
scaling list as specified in Table 7-2.

7.4.2.1.2 Sequence parameter set extension RBSP semantics

seq_parameter_set_id identifies the sequence parameter set associated with the sequence parameter set extension. The
value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

aux_format_idc equal to O indicates that there are no auxiliary coded pictures in the coded video sequence. aux_format_idc
equal to 1 indicates that exactly one auxiliary coded picture is present in each access unit of the coded video sequence, and
that for alpha blending purposes the decoded samples of the associated primary coded picture in each access unit should
be multiplied by the interpretation sample values of the auxiliary coded picture in the access unit in the display process
after output from the decoding process. aux_format_idc equal to 2 indicates that exactly one auxiliary coded picture exists
in each access unit of the coded video sequence, and that for alpha blending purposes the decoded samples of the associated
primary coded picture in each access unit should not be multiplied by the interpretation sample values of the auxiliary

Rec. ITU-T H.264 (08/2021) 79

coded picture in the access unit in the display process after output from the decoding process. aux_format_idc equal to 3
indicates that exactly one auxiliary coded picture exists in each access unit of the coded video sequence, and that the usage
of the auxiliary coded pictures is unspecified. The value of aux_format_idc shall be in the range of 0 to 3, inclusive. Values
greater than 3 for aux_format_idc are reserved to indicate the presence of exactly one auxiliary coded picture in each access
unit of the coded video sequence for purposes to be specified in the future by ITU-T | ISO/IEC. When aux_format_idc is
not present, it shall be inferred to be equal to 0.

NOTE 1 — Decoders are not required to decode auxiliary coded pictures.

bit_depth_aux_minus8 specifies the bit depth of the samples of the sample array of the auxiliary coded picture.
bit_depth_aux_minus8 shall be in the range of 0 to 4, inclusive.

alpha_incr_flag equal to O indicates that the interpretation sample value for each decoded auxiliary coded picture sample
value is equal to the decoded auxiliary coded picture sample value for purposes of alpha blending. alpha_incr_flag equal
to 1 indicates that, for purposes of alpha blending, after decoding the auxiliary coded picture samples, any auxiliary coded
picture sample value that is greater than Min(alpha_opaque_value, alpha_transparent_value) should be increased by one
to obtain the interpretation sample value for the auxiliary coded picture sample, and any auxiliary coded picture sample
value that is less than or equal to Min(alpha_opaque_value, alpha_transparent_value) should be used without alteration as
the interpretation sample value for the decoded auxiliary coded picture sample value.

alpha_opaque_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered opaque for purposes of alpha blending. The
number of bits used for the representation of the alpha_opaque_value syntax element is bit_depth_aux_minus8 + 9 bits.

alpha_transparent_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered transparent for purposes of alpha blending.
The number of bits used for the representation of the alpha_transparent_value syntax element is bit_depth_aux_minus8 + 9
bits.

When alpha_incr_flag is equal to 1, alpha transparent value shall not be equal to alpha opaque_value and
Log2(Abs(alpha_opaque_value — alpha_transparent_value)) shall have an integer value. A value of
alpha_transparent_value that is equal to alpha_opaque_value indicates that the auxiliary coded picture is not intended for
alpha blending purposes.
NOTE 2 — For alpha blending purposes, alpha_opaque_value may be greater than alpha_transparent_value, or it may be less than
alpha_transparent_value. Interpretation sample values should be clipped to the range of alpha_opaque_value to
alpha_transparent_value, inclusive.

The decoding of the sequence parameter set extension and the decoding of auxiliary coded pictures is not required for
conformance with this Recommendation | International Standard.

The syntax of each coded slice of an auxiliary coded picture shall obey the same constraints as a coded slice of a redundant
picture, with the following differences of constraints:

a) Inregard to whether the primary coded picture is an IDR picture, the following applies:

— If the primary coded picture is an IDR picture, the auxiliary coded slice syntax shall correspond to that of a
slice having nal_unit_type equal to 5 (a slice of an IDR picture).

— Otherwise (the primary coded picture is not an IDR picture), the auxiliary coded slice syntax shall correspond
to that of a slice having nal_unit_type equal to 1 (a slice of a non-IDR picture).

b) The slices of an auxiliary coded picture (when present) shall contain all macroblocks corresponding to those of
the primary coded picture.

c) redundant_pic_cnt shall be equal to 0 in all auxiliary coded slices.

The (optional) decoding process for the decoding of auxiliary coded pictures is the same as if the auxiliary coded pictures
were primary coded pictures in a separate coded video stream that differs from the primary coded pictures in the current
coded video stream in the following ways:

— The IDR or non-1DR status of each auxiliary coded picture shall be inferred to be the same as the IDR or non-IDR
status of the primary picture in the same access unit, rather than being inferred from the value of nal_unit_type.

— Thevalue of chroma_format_idc and the value of ChromaArrayType shall be inferred to be equal to 0 for the decoding
of the auxiliary coded pictures.

— The value of bit_depth_luma_minus8 shall be inferred to be equal to bit_depth_aux_minus8 for the decoding of the
auxiliary coded pictures.

NOTE 3 — Alpha blending composition is normally performed with a background picture B, a foreground picture F, and a decoded
auxiliary coded picture A, all of the same size. Assume for purposes of example illustration that the chroma resolution of B and F

80 Rec. ITU-T H.264 (08/2021)

have been upsampled to the same resolution as the luma. Denote corresponding samples of B, F and A by b, f and a, respectively.
Denote luma and chroma samples by subscripts Y, Cb and Cr.

Define the variables alphaRange, alphaFwt and alphaBwt as follows:
alphaRange = Abs(alpha_opaque_value — alpha_transparent_value)
alphaFwt = Abs(a — alpha_transparent_value)
alphaBwt = Abs(a — alpha_opaque_value)
Then, in alpha blending composition, samples d of the displayed picture D may be calculated as
dvy = (alphaFwt * fy + alphaBwt * by + alphaRange / 2) / alphaRange
deb = (alphaFwt * fcp + alphaBwt * bep + alphaRange / 2) / alphaRange
dcr = (alphaFwt * fcr + alphaBwt * ber + alphaRange / 2) / alphaRange

The samples of pictures D, F and B could also represent red, green, and blue component values (see clause E.2.1). Here we have
assumed Y, Cb and Cr component values. Each component, e.g., Y, is assumed for purposes of example illustration above to have
the same bit depth in each of the pictures D, F and B. However, different components, e.g., Y and Cb, need not have the same bit
depth in this example.

When aux_format_idc is equal to 1, F would be the decoded picture obtained from the decoded luma and chroma, and A would be
the decoded picture obtained from the decoded auxiliary coded picture. In this case, the indicated example alpha blending
composition involves multiplying the samples of F by factors obtained from the samples of A.

A picture format that is useful for editing or direct viewing, and that is commonly used, is called pre-multiplied-black video. If the
foreground picture was F, then the pre-multiplied-black video S is given by

Sy = (alphaFwt * fy) / alphaRange

Sch = (alphaFwt * fcp) / alphaRange

scr = (alphaFwt * fc) / alphaRange
Pre-multiplied-black video has the characteristic that the picture S will appear correct if displayed against a black background. For
a non-black background B, the composition of the displayed picture D may be calculated as

dv =sy + (alphaBwt * by + alphaRange / 2) / alphaRange

deb = scb + (alphaBwt * bep + alphaRange / 2) / alphaRange

dcr = scr + (alphaBwt * ber + alphaRange / 2) / alphaRange
When aux_format_idc is equal to 2, S would be the decoded picture obtained from the decoded luma and chroma, and A would

again be the decoded picture obtained from the decoded auxiliary coded picture. In this case, alpha blending composition does not
involve multiplication of the samples of S by factors obtained from the samples of A.

additional_extension_flag equal to 0 indicates that no additional data follows within the sequence parameter set extension
syntax structure prior to the RBSP trailing bits. The value of additional_extension_flag shall be equal to 0. The value of 1
for additional_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all data that follows
the value of 1 for additional_extension_flag in a sequence parameter set extension NAL unit.

7.4.2.1.3 Subset sequence parameter set RBSP semantics

svc_vui_parameters_present_flag equal to O specifies that the syntax structure svc_vui_parameters_extension() is not
present. svc_vui_parameters_present_flag equal to 1 specifies that the syntax structure svc_vui_parameters_extension()
is present.

bit_equal_to_one shall be equal to 1.

mvc_vui_parameters_present_flag equal to 0 specifies that the syntax structure mvc_vui_parameters_extension() is not
present. mvc_vui_parameters_present_flag equal to 1 specifies that the syntax structure mvc_vui_parameters_extension()
is present.

additional_extension2_flag equal to 0 specifies that no additional_extension2_data_flag syntax elements are present in
the subset sequence parameter set RBSP syntax structure. additional_extension2_flag shall be equal to O in bitstreams
conforming to this Recommendation | International Standard. The value of 1 for additional_extension2_flag is reserved for
future use by ITU-T | ISO/IEC. Decoders shall ignore all data that follow the value 1 for additional_extension2_flag in a
subset sequence parameter set NAL unit.

additional_extension2_data_flag may have any value. It shall not affect the conformance to profiles specified in
Annex A, G, H, or I.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set_id shall be in the range
of 0 to 31, inclusive.

Rec. ITU-T H.264 (08/2021) 81

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows:

— If entropy_coding_mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see clause 9.1 or CAVLC, see clause 9.2).

— Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table
is applied (CABAC, see clause 9.3).

bottom_field_pic_order_in_frame_present flag equal to 1 specifiess that the syntax elements
delta_pic_order_cnt_bottom (when pic_order_cnt type is equal to 0) or delta_pic_order_cnt[1] (when
pic_order_cnt_type is equal to 1), which are related to picture order counts for the bottom field of a coded frame, are
present in the slice headers for coded frames as specified in clause 7.3.3. bottom_field_pic_order_in_frame_present_flag
equal to 0 specifies that the syntax elements delta_pic_order_cnt_bottom and delta_pic_order_cnt[1] are not present in
the slice headers.

num_slice_groups_minusl plus 1 specifies the number of slice groups for a picture. When num_slice_groups_minusl is
equal to O, all slices of the picture belong to the same slice group. The allowed range of num_slice_groups_minusl is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group_map_type shall be in the range of 0 to 6, inclusive.

slice_group_map_type equal to O specifies interleaved slice groups.
slice_group_map_type equal to 1 specifies a dispersed slice group mapping.
slice_group_map_type equal to 2 specifies one or more “foreground" slice groups and a "leftover" slice group.

slice_group_map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice_groups_minus1 is not
equal to 1, slice_group_map_type shall not be equal to 3, 4, or 5.

slice_group_map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows:

— Ifframe_mbs_only flagisequal to 0 and mb_adaptive frame_field_flag is equal to 1 and the coded picture is a frame,
the slice group map units are macroblock pair units.

— Otherwise, if frame_mbs_only_flag is equal to 1 or the coded picture is a field, the slice group map units are units of
macroblocks.

— Otherwise (frame_mbs_only_flag is equal to 0 and mb_adaptive_frame_field_flag is equal to 0 and the coded picture
is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a frame
macroblock pair of an MBAFF frame.

run_length_minusl[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th slice
group in raster scan order of slice group map units. The value of run_length_minus1[i] shall be in the range of 0 to
PicSizelInMapUnits — 1, inclusive.

top_left[i] and bottom_right[i] specify the top-left and bottom-right corners of a rectangle, respectively. top_left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, all of the following constraints shall be obeyed by the values of the syntax elements top_left[i] and
bottom_right[i]:

— top_left[i] shall be less than or equal to bottom_right[i] and bottom_right[i] shall be less than PicSizelnMapUnits.
— (top_left[i] % PicWidthinMbs) shall be less than or equal to the value of (bottom_right[i] % PicWidthinMbs).

slice_group_change_direction_flag is used with slice_group_map_type to specify the refined map type when
slice_group_map_type is 3, 4, or 5.

slice_group_change_rate_minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice_group_change_rate_minusl shall be in the range of 0 to PicSizeInMapUnits — 1, inclusive.
The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group_change_rate_minusl + 1 (7-23)

pic_size_in_map_units_minusl is used to specify the number of slice group map units in the picture.
pic_size_in_map_units_minusl shall be equal to PicSizelInMapUnits — 1.

82 Rec. ITU-T H.264 (08/2021)

slice_group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The length of the
slice_group_id[i] syntax element is Ceil(Log2(hum_slice_groups_minusl + 1)) bits. The value of slice_group_id[i]
shall be in the range of 0 to num_slice_groups_minus1, inclusive.

num_ref idx_10_default_active_minusl specifies how num_ref idx_I0_active_minusl is inferred for P, SP, and B slices
with num_ref_idx_active_override_flag equal to 0. The value of num_ref _idx_I0_default_active_minusl shall be in the
range of 0 to 31, inclusive.

num_ref_idx_I1_default_active_minusl specifies how num_ref_idx_I1_active_minusl is inferred for B slices with
num_ref_idx_active_override_flag equal to 0. The value of num_ref idx_I1 default_active_minusl shall be in the range
of 0 to 31, inclusive.

weighted_pred_flag equal to O specifies that the default weighted prediction shall be applied to P and SP slices.
weighted_pred_flag equal to 1 specifies that explicit weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to 0 specifies that the default weighted prediction shall be applied to B slices.
weighted_bipred_idc equal to 1 specifies that explicit weighted prediction shall be applied to B slices. weighted_bipred_idc
equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of weighted_bipred_idc shall
be in the range of 0 to 2, inclusive.

pic_init_gp_minus26 specifies the initial value minus 26 of SliceQPv for each slice. The initial value is modified at the
slice layer when a non-zero value of slice_gp_delta is decoded, and is modified further when a non-zero value of
mb_qp_delta is decoded at the macroblock layer. The value of pic_init_gp_minus26 shall be in the range of
—(26 + QpBdOffsety) to +25, inclusive.

pic_init_gs_minus26 specifies the initial value minus 26 of SliceQSy for all macroblocks in SP or Sl slices. The initial
value is modified at the slice layer when a non-zero value of slice_gs_delta is decoded. The value of pic_init_gs_minus26
shall be in the range of —26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPv and QSy for addressing the table of QP¢ values
for the Cb chroma component. The value of chroma_qp_index_offset shall be in the range of —12 to +12, inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter_control_present_flag equal to 0 specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

constrained_intra_pred_flag equal to O specifies that intra prediction allows usage of residual data and decoded samples
of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks coded
using Intra macroblock prediction modes. constrained_intra_pred_flag equal to 1 specifies constrained intra prediction, in
which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual data and decoded
samples from | or SI macroblock types.

redundant_pic_cnt_present_flag equal to 0 specifies that the redundant_pic_cnt syntax element is not present in slice
headers, coded slice data partition B NAL units, and coded slice data partition C NAL units that refer (either directly or by
association with a corresponding coded slice data partition A NAL unit) to the picture parameter set.
redundant_pic_cnt_present_flag equal to 1 specifies that the redundant_pic_cnt syntax element is present in all slice
headers, coded slice data partition B NAL units, and coded slice data partition C NAL units that refer (either directly or by
association with a corresponding coded slice data partition A NAL unit) to the picture parameter set.

transform_8x8 _mode_flag equal to 1 specifies that the 8x8 transform decoding process may be in use (see clause 8.5).
transform_8x8 mode_flag equal to O specifies that the 8x8 transform decoding process is not in use. When
transform_8x8_mode_flag is not present, it shall be inferred to be 0.

pic_scaling_matrix_present_flag equal to 1 specifies that parameters are present to modify the scaling lists specified in
the sequence parameter set. pic_scaling_matrix_present_flag equal to 0 specifies that the scaling lists used for the picture
shall be inferred to be equal to those specified by the sequence parameter set. When pic_scaling_matrix_present_flag is
not present, it shall be inferred to be equal to 0.

pic_scaling_list_present_flag[i] equal to 1 specifies that the scaling list syntax structure is present to specify the scaling
list for index i. pic_scaling_list_present_flag[i] equal to O specifies that the syntax structure for scaling list i is not present
in the picture parameter set and that depending on the value of seq_scaling_matrix_present_flag, the following applies:

— Ifseq_scaling_matrix_present_flag is equal to 0, the scaling list fall-back rule set A as specified in Table 7-2 shall be
used to derive the picture-level scaling list for index i.

— Otherwise (seq_scaling_matrix_present_flag is equal to 1), the scaling list fall-back rule set B as specified
in Table 7-2 shall be used to derive the picture-level scaling list for index i.

Rec. ITU-T H.264 (08/2021) 83

second_chroma_qp_index_offset specifies the offset that shall be added to QPv and QSy for addressing the table of QP¢
values for the Cr chroma component. The value of second_chroma_gp_index_offset shall be in the range of —12 to +12,
inclusive.

When second_chroma_gp_index_offset is not present, it shall be inferred to be equal to chroma_gp_index_offset.

NOTE — When ChromaArrayType is equal to O, the values of bit_depth_chroma_minus8, chroma_qp_index_offset and
second_chroma_qp_index_offset are not used in the decoding process. In particular, when separate_colour_plane_flag is equal to 1,
each colour plane is decoded as a distinct monochrome picture using the luma component decoding process (except for the selection
of scaling matrices), including the application of the luma quantization parameter derivation process without application of an offset
for the decoding of the pictures having colour_plane_id not equal to 0.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded
pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI RBSP contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of RBSP bytes in the SEI payload.

NOTE - The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes
(represented by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in RBSP
bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to OxFF identifying a need for a longer representation of the syntax structure that it is used within.
last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size byte is the last byte of the payload size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set
listed in Table 7-5 for the given value of primary_pic_type.

NOTE — The value of primary_pic_type applies to the slice_type values in all slice headers of the primary coded picture, including
the slice_type syntax elements in all NAL units with nal_unit_type equal to 1, 2, or 5.

Table 7-5 — Meaning of primary_pic_type

primary_pic_type | slice_type values that may be present in the primary coded picture
2,7

0,257

0,1,25,6,7

4,9

3,4,8,9

2,4,7,9

0,23/45,7,8,9

0,123,4,56,7,8,9

~Njojlo|~[lwW|IN|F—|O

7.4.25 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall
be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No normative
decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to the
end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are empty.
No normative decoding process is specified for an end of stream RBSP.

84 Rec. ITU-T H.264 (08/2021)

NOTE — When an end of stream NAL unit is present, the bitstream is considered to end (for purposes of the scope of this
Recommendation | International Standard). In some system environments, another bitstream may follow after the bitstream that has
ended, either immediately or at some time thereafter, possibly within the same communication channel. Under such circumstances,
the scope of this Recommendation | International Standard applies only to the processing of each of these individual bitstreams. No
requirements are specified herein regarding the transition between such bitstreams (e.g., in regard to timing, buffering operation,
etc.).

7.4.2.7 Filler data RBSP semantics
The filler data RBSP contains zero or more bytes. No normative decoding process is specified for a filler data RBSP.

ff_byte is a byte. It is a requirement of bitstream conformance that the value of ff_byte shall be equal to OXFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.
7.4.2.9 Slice data partition RBSP semantics

7.4.2.9.1 Slice data partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition A contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

slice_id identifies the slice associated with the slice data partition. The value of slice_id is constrained as follows:
— If separate_colour_plane_flag is equal to 0, the following applies:

— Ifarbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture, in decoding order,
shall have slice_id equal to 0 and the value of slice_id shall be incremented by one for each subsequent slice of
the coded picture in decoding order.

— Otherwise (arbitrary slice order is allowed), each slice shall have a unique slice_id value within the set of slices
of the coded picture.

— Otherwise (separate_colour_plane_flag is equal to 1), the following applies:

— If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture having each value
of colour_plane_id, in decoding order, shall have slice_id equal to O and the value of slice_id shall be
incremented by one for each subsequent slice of the coded picture having the same value of colour_plane_id, in
decoding order.

— Otherwise (arbitrary slice order is allowed) each slice shall have a unique slice_id value within each set of slices
of the coded picture that have the same value of colour_plane_id.

The range of slice_id is specified as follows:
— If MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizeInMbs — 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), slice_id shall be in the range of 0 to PicSizeInMbs / 2 — 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions. Slice
data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and Sl as specified in Table 7-10.

slice_id has the same semantics as specified in clause 7.4.2.9.1.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is
equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE — There is no dependency between the decoding processes of pictures having different values of colour_plane_id.

redundant_pic_cnt shall be equal to 0 for coded slices and coded slice data partitions belonging to the primary coded
picture. The redundant_pic_cnt shall be greater than 0 for coded slices and coded slice data partitions in redundant coded
pictures. When redundant_pic_cnt is not present, its value shall be inferred to be equal to 0. The value of redundant_pic_cnt
shall be in the range of 0 to 127, inclusive.

Rec. ITU-T H.264 (08/2021) 85

The presence of a slice data partition B RBSP is specified as follows:

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3 in
the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice_id and
redundant_pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-10.

slice_id has the same semantics as specified in clause 7.4.2.9.1.
colour_plane_id has the same semantics as specified in clause 7.4.2.9.2.
redundant_pic_cnt has the same semantics as specified in clause 7.4.2.9.2.
The presence of a slice data partition C RBSP is specified as follows:

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4 in
the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice_id and
redundant_pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP slice trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.
Let NumBytesInVcINALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(), specified in
clause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When
entropy_coding_mode_flag is equal to 1, it is a requirement of bitstream conformance that BinCountsInNALunits shall
not exceed (32 + 3) * NumBytesInVcINALunits + (RawMbBits * PicSizelnMbs) + 32.

NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac_zero_word syntax elements to increase the value of NumBytesInVcINALunits. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three_byte for each cabac_zero_word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.2.12 Prefix NAL unit RBSP semantics

The content of the prefix NAL unit RBSP is dependent on the value of svc_extension_flag.

7.4.2.13 Slice layer extension RBSP semantics
The content of the slice layer extension RBSP is dependent on the value of svc_extension_flag.

Coded slice extension NAL units with svc_extension_flag equal to 1 are also referred to as coded slice in scalable extension
NAL units and coded slice extension NAL units with svc_extension_flag equal to 0 are also referred to as coded slice
MVC extension NAL units.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic_parameter_set id, frame_num, field_pic_flag,
bottom_field_flag, idr_pic_id, pic_order_cnt_lsb, delta_pic_order_cnt_bottom, delta_pic_order _cnt[0],
delta_pic_order_cnt[1], sp_for_switch_flag, and slice_group_change_cycle shall be the same in all slice headers of a
coded picture.

86 Rec. ITU-T H.264 (08/2021)

first_mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first_mb_in_slice is constrained as follows:

— If separate_colour_plane_flag is equal to O, the value of first_mb_in_slice shall not be less than the value of
first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order.

— Otherwise (separate_colour_plane_flag is equal to 1), the value of first_mb_in_slice shall not be less than the value
of first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order and has
the same value of colour_plane_id.

The first macroblock address of the slice is derived as follows:

— If MbaffFrameFlag is equal to 0, first_mb_in_slice is the macroblock address of the first macroblock in the slice, and
first_mb_in_slice shall be in the range of 0 to PicSizeInMbs — 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), first_mb_in_slice * 2 is the macroblock address of the first macroblock in
the slice, which is the top macroblock of the first macroblock pair in the slice, and first_ mb_in_slice shall be in the
range of 0 to PicSizeInMbs / 2 — 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-6.

Table 7-6 — Name association to slice_type

slice_type Name of slice_type
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
Sl (Sl slice)
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
Sl (Sl slice)

O |IN[oO(O|h|W[IN|FL|O

When slice_type has a value in the range 5..9, it is a requirement of bitstream conformance that all other slices of the
current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value
of slice_type minus 5.

NOTE 1 - Values of slice_type in the range 5..9 can be used by an encoder to indicate that all slices of a picture have the same value
of (slice_type % 5). Values of slice_type in the range 5..9 are otherwise equivalent to corresponding values in the range 0..4.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.
When max_num_ref_frames is equal to 0, slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range
of 0 to 255, inclusive.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is
equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE 2 — There is no dependency between the decoding processes of pictures having different values of colour_plane_id.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in the
bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows:
— If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.
— Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows:

— If the decoding process for gaps in frame_num specified in clause 8.2.5.2 was invoked by the decoding process
for an access unit that contained a non-reference picture that followed the previous access unit in decoding order
that contained a reference picture, PrevRefFrameNum is set equal to the value of frame_num for the last of the

Rec. ITU-T H.264 (08/2021) 87

"non-existing" reference frames inferred by the decoding process for gaps in frame_num specified in
clause 8.2.5.2.

Otherwise, PrevRefFrameNum is set equal to the value of frame_num for the previous access unit in decoding
order that contained a reference picture.

The value of frame_num is constrained as follows:

— If the current picture is an IDR picture, frame_num shall be equal to 0.

— Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame_num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true:

a)
b)

c)

The current picture and the preceding reference picture belong to consecutive access units in decoding order.
The current picture and the preceding reference picture are reference fields having opposite parity.

One or more of the following conditions is true:
— The preceding reference picture is an IDR picture,

— The preceding reference picture includes a memory_management_control_operation syntax element equal
to 5,

NOTE 3 — When the preceding reference picture includes a memory_management_control_operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

— There isaprimary coded picture that precedes the preceding reference picture and the primary coded picture
that precedes the preceding reference picture does not have frame_num equal to PrevRefFrameNum,

— There isaprimary coded picture that precedes the preceding reference picture and the primary coded picture
that precedes the preceding reference picture is not a reference picture.

When the value of frame_num is not equal to PrevRefFrameNum, it is a requirement of bitstream conformance that the
following constraints shall be obeyed:

a)

b)

There shall not be any previous field or frame in decoding order that is currently marked as "used for short-term
reference” that has a value of frame_num equal to any value taken on by the variable
UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame_num) (7-24)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

The value of frame_num is constrained as follows:

— If gaps_in_frame_num_value_allowed_flag is equal to O, the value of frame_num for the current picture
shall be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

— Otherwise (gaps_in_frame_num_value_allowed flag is equal to 1), the following applies:

— If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order
in which either of the following conditions is true:

— The value of frame_num for the non-reference picture is less than PrevRefFrameNum,

— The value of frame_num for the non-reference picture is greater than the value of frame_num for
the current picture.

— Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures
in the bitstream that follow the previous reference picture and precede the current picture in decoding
order in which both of the following conditions are true:

— The value of frame_num for the non-reference picture is less than PrevRefFrameNum,

— The value of frame_num for the non-reference picture is greater than the value of frame_num for
the current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as described
above and, after the decoding of the current picture and the processing of the memory management control operations, the
picture shall be inferred to have had frame_num equal to O for all subsequent use in the decoding process, except as
specified in clause 7.4.1.2.4.

NOTE 4 — When the primary coded picture is not an IDR picture and does not contain memory_management_control_operation
syntax element equal to 5, the value of frame_num of a corresponding redundant coded picture is the same as the value of frame_num

88

Rec. ITU-T H.264 (08/2021)

in the primary coded picture. Alternatively, the redundant coded picture includes a memory_management_control_operation syntax
element equal to 5 and the corresponding primary coded picture is an IDR picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field_pic_flag equal to 0 specifies that the slice
is a slice of a coded frame. When field_pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as

MbaffFrameFlag = (mb_adaptive_frame_field_flag && !field_pic _flag) (7-25)

The variable for the picture height in units of macroblocks is derived as

PicHeightinMbs = FrameHeightinMbs / (1 + field_pic_flag) (7-26)

The variable for picture height for the luma component is derived as

PicHeightinSamples, = PicHeightinMbs * 16 (7-27)

The variable for picture height for the chroma component is derived as

PicHeightinSamplesc = PicHeightinMbs * MbHeightC (7-28)

The variable PicSizelnMbs for the current picture is derived as

PicSizelnMbs = PicWidthInMbs * PicHeightInMbs (7-29)

The variable MaxPicNum is derived as follows:

— Iffield_pic_flag is equal to 0, MaxPicNum is set equal to MaxFrameNum.

— Otherwise (field_pic_flag is equal to 1), MaxPicNum is set equal to 2*MaxFrameNum.
The variable CurrPicNum is derived as follows:

— Iffield_pic_flag is equal to O, CurrPicNum is set equal to frame_num.

— Otherwise (field_pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame_num + 1.

bottom_field_flag equal to 1 specifies that the slice is part of a coded bottom field. bottom_field_flag equal to 0 specifies
that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be inferred to be
equal to 0.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged.
When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of the
first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of idr_pic_id shall
be in the range of 0 to 65535, inclusive.

NOTE 5 — It is not prohibited for multiple IDR pictures in a bitstream to have the same value of idr_pic_id unless such pictures
occur in two consecutive access units in decoding order.

pic_order_cnt_lIsb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or for
a coded field. The length of the pic_order_cnt_Isb syntax element is log2_max_pic_order_cnt_Isb_minus4 + 4 bits. The
value of the pic_order_cnt_Isb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of a
coded frame as follows:

— If the current picture includes a memory_management control_operation equal to 5, the value of
delta_pic_order_cnt_bottom shall be in the range of (1 — MaxPicOrderCntLsb) to 2% — 1, inclusive.

— Otherwise (the current picture does not include a memory_management_control_operation equal to 5), the value of
delta_pic_order_cnt_bottom shall be in the range of —2% + 1 to 2% — 1, inclusive.

When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

delta_pic_order_cnt[0] specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in clause 8.2.1. The value of delta_pic_order_cnt[0] shall be in the
range of —2%! + 1 to 23! — 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall
be inferred to be equal to 0.

Rec. ITU-T H.264 (08/2021) 89

delta_pic_order_cnt[1] specifies the picture order count difference from the expected picture order count for the bottom
field of a coded frame specified in clause 8.2.1. The value of delta_pic_order_cnt[1] shall be in the range of —23! + 1
to 231 — 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be
equal to 0.

redundant_pic_cnt shall be equal to O for slices and slice data partitions belonging to the primary coded picture. The
value of redundant_pic_cnt shall be greater than O for coded slices or coded slice data partitions of a redundant coded
picture. When redundant_pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant_pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE 6 — Any area of the decoded primary picture and the corresponding area that would result from application of the decoding
process specified in clause 8 for any redundant picture in the same access unit should be visually similar in appearance.

The value of pic_parameter_set_id in a coded slice or coded slice data partition of a redundant coded picture shall be such
that the value of bottom_field pic_order_in_frame_present_flag in the picture parameter set in use in a redundant coded
picture is equal to the value of bottom_field_pic_order_in_frame_present_flag in the picture parameter set in use in the
corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have the
same value: field_pic_flag, bottom_field flag, and idr_pic_id.

When the value of nal_ref_idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref_idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE 7 — The above constraint also has the following implications. If the value of nal_ref_idc for the VCL NAL units of the primary
coded picture is equal to 0, the value of nal_ref_idc for the VCL NAL units of any corresponding redundant coded picture are equal
to 0; otherwise (the value of nal_ref_idc for the VCL NAL units of the primary coded picture is greater than 0), the value of
nal_ref_idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame_num after the decoded reference picture marking process
as specified in clause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the same access unit
shall be identical regardless whether the primary coded picture or any redundant coded picture (instead of the primary
coded picture) of the access unit would be decoded.

NOTE 8 — The above constraint also has the following implications.

When the primary coded picture is an IDR picture and a redundant coded picture corresponding to the primary coded picture is an
IDR picture, the contents of the dec_ref_pic_marking() syntax structure must be identical in all slice headers of the primary coded
picture and the redundant coded picture corresponding to the primary coded picture.

When the primary coded picture is an IDR picture and a redundant coded picture corresponding to the primary coded picture is not
an IDR picture, all slice headers of the redundant picture must contain a dec_ref_pic_marking syntax() structure including a
memory_management_control_operation syntax element equal to 5, and the following applies:

— If the value of long_term_reference_flag in the primary coded picture is equal to 0, the dec_ref_pic_marking syntax structure
of the redundant coded picture must not include a memory_management_control_operation syntax element equal to 6.

— Otherwise (the value of long_term_reference_flag in the primary coded picture is equal to 1), the dec_ref_pic_marking syntax
structure of the redundant coded picture must include memory_management_control_operation syntax elements equal to 5, 4,
and 6 in decoding order, and the value of max_long_term_frame_idx_plusl must be equal to 1, and the value of
long_term_frame_idx must be equal to 0.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical regardless
whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of the access unit
would be decoded.

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant_pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.
NOTE 9 — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in
transmission of the sequence and one or more coded slices of a redundant coded picture can be correctly decoded, the decoder should
replace the samples of the decoded primary picture with the corresponding samples of the decoded slice or decoded slices of the
redundant coded picture. When slices of more than one redundant coded picture cover the relevant region of the primary coded
picture, the slice or slices of the redundant coded picture having the lowest value of redundant_pic_cnt should be used.

Slices and slice data partitions having the same value of redundant_pic_cnt belong to the same coded picture. If the value
of redundant_pic_cnt is equal to 0, they belong to the primary coded picture; otherwise (the value of redundant_pic_cnt is
greater than 0), they belong to the same redundant coded picture. Decoded slices within the same redundant coded picture
need not cover the entire picture area and shall not overlap.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows:

90 Rec. ITU-T H.264 (08/2021)

— If direct_spatial_ mv_pred_flag is equal to1, the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct 8x8 in clause 8.4.1.2 shall use spatial direct mode prediction as specified in
clause 8.4.1.2.2.

— Otherwise (direct_spatial_mv_pred_flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct_8x8 in clause 8.4.1.2 shall use temporal direct mode prediction as specified in
clause 8.4.1.2.3.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_I0_active_minusl is present
for P, SP, and B slices and that the syntax element num_ref idx |1 active minusl is present for B slices.
num_ref_idx_active_override_flag equal to O specifies that the syntax elements num_ref _idx_I0_active_minusl and
num_ref_idx_I1_active_minusl are not present.

When the current slice is a P, SP, or B slice and field pic flag is equal to0 and the value of
num_ref_idx_|0_default_active_minusl in the picture parameter set exceeds 15, num_ref idx_active_override_flag shall
be equal to 1.

When the current slice is a B slice and field_pic_flag is equal to 0 and the value of num_ref_idx_I1_default_active_minusl
in the picture parameter set exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

num_ref_idx_l0_active_minusl specifies the maximum reference index for reference picture list O that shall be used to
decode the slice.

When the current slice is a P, SP, or B slice and num_ref idx 0 _active_minusl is not present,
num_ref_idx_l0_active_minusl shall be inferred to be equal to num_ref_idx_|l0_default_active_minusl.

The range of num_ref_idx_I10_active_minusl is specified as follows:

— If field_pic_flag is equal to 0, num_ref_idx_I0_active_minusl shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref _idx_l0_active_minusl is the maximum index value for the decoding of frame
macroblocks and 2 * num_ref _idx_I0_active_minusl + 1 is the maximum index value for the decoding of field
macroblocks.

— Otherwise (field_pic_flag is equal to 1), num_ref_idx_l0_active_minusl shall be in the range of 0 to 31, inclusive.

num_ref_idx_I1_active_minusl specifies the maximum reference index for reference picture list 1 that shall be used to
decode the slice.

When the current slice is a B slice and num_ref_idx_I1_active_minusl is not present, num_ref_idx_I1_active_minusl shall
be inferred to be equal to num_ref_idx_I1_default_active_minus1.

The range of num_ref idx |1 active minusl is constrained as specified in the semantics for
num_ref_idx_I0_active_minusl with 10 and list O replaced by 11 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialization table used in the initialization process for context
variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

slice_qgp_delta specifies the initial value of QPv to be used for all the macroblocks in the slice until modified by the value
of mb_qp_delta in the macroblock layer. The initial QPy quantization parameter for the slice is computed as

SliceQPy = 26 + pic_init_gp_minus26 + slice_qp_delta (7-30)

The value of slice_gp_delta shall be limited such that SliceQPy is in the range of —QpBdOffsety to +51, inclusive.
sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows:

— If sp_for_switch_flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding process
for non-switching pictures as specified in clause 8.6.1.

— Otherwise (sp_for_switch_flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and SI
decoding process for switching pictures as specified in clause 8.6.2.

slice_qs_delta specifies the value of QSy for all the macroblocks in SP and Sl slices. The QSy quantization parameter for
the slice is computed as

QSy = 26 + pic_init_gs_minus26 + slice_qgs_delta (7-31)
The value of slice_gs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QSy is used

for the decoding of all macroblocks in Sl slices with mb_type equal to SI and all macroblocks in SP slices that are coded
in an Inter macroblock prediction mode.

Rec. ITU-T H.264 (08/2021) 91

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some block
edges of the slice and specifies for which edges the filtering is disabled. When disable_deblocking_filter_idc is not present
in the slice header, the value of disable_deblocking_filter_idc shall be inferred to be equal to 0.

The value of disable_deblocking_filter_idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the a and tco deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when addressing
these tables shall be computed as

FilterOffsetA = slice_alpha_c0_offset_div2 << 1 (7-32)

The value of slice_alpha_c0_offset_div2 shall be in the range of —6 to +6, inclusive. When slice_alpha_c0_offset_div2 is
not present in the slice header, the value of slice_alpha_cO_offset_div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the p deblocking filter table for filtering operations controlled
by the macroblocks within the slice. From this value, the offset that is applied when addressing the [table of the deblocking
filter shall be computed as

FilterOffsetB = slice_beta_offset_div2 <<'1 (7-33)

The value of slice_beta_offset_div2 shall be in the range of —6 to +6, inclusive. When slice_beta_offset_div2 is not present
in the slice header the value of slice_beta_offset_div2 shall be inferred to be equal to 0.

slice_group_change_cycle is used to derive the number of slice group map units in slice group 0 when
slice_group_map_type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0 = Min(slice_group_change_cycle * SliceGroupChangeRate,
PicSizelInMapUnits) (7-34)

The value of slice_group_change_cycle is represented in the bitstream by the following number of bits
Ceil(Log2(PicSizelInMapUnits + SliceGroupChangeRate + 1)) (7-35)

The value of slice_group_change_cycle shall be in the range of 0 to Ceil(PicSizeInMapUnits+SliceGroupChangeRate),
inclusive.

7.4.3.1 Reference picture list modification semantics

The syntax elements modification_of pic_nums_idc, abs_diff_pic_num_minusl, and long_term_pic_num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present
for specifying reference picture list 0. ref_pic_list_modification_flag_10 equal to 0 specifies that this syntax element is not
present.

When ref_pic_list_modification_flag_10 is equal to 1, the number of times that modification_of pic_nums_idc is not equal
to 3 following ref_pic_list_modification_flag_10 shall not exceed num_ref _idx_I0_active_minusl + 1.

When RefPicListO] num_ref_idx_I0_active_minusl] in the initial reference picture list produced as specified in
clause 8.2.4.2 is equal to "no reference picture”, ref pic_list modification flag 10 shall be equal tol and
modification_of pic_nums_idc shall not be equal to 3 until RefPicListO[num_ref _idx_I0_active_minusl] in the modified
list produced as specified in clause 8.2.4.3 is not equal to "no reference picture".

ref_pic_list_modification_flag_l1 equal to 1 specifies that the syntax element modification_of pic_nums_idc is present
for specifying reference picture list 1. ref_pic_list_modification_flag_I1 equal to 0 specifies that this syntax element is not
present.

When ref_pic_list_modification_flag_I1 is equal to 1, the number of times that modification_of pic_nums_idc is not equal
to 3 following ref_pic_list_modification_flag_I1 shall not exceed num_ref_idx_I1_active_minusl + 1.

When decoding a slice with slice_type equal to 1 or 6 and RefPicListl[num_ref idx_I1_active_minusl] in the initial
reference picture list produced as specified in clause 8.2.4.2 is equal to "no reference picture”,
ref_pic_list_modification_flag_I1 shall be equal to 1 and modification_of pic_nums_idc shall not be equal to 3 until
RefPicListl[num_ref_idx_I1_active_minusl] in the modified list produced as specified in clause 8.2.4.3 is not equal to
"no reference picture”.

92 Rec. ITU-T H.264 (08/2021)

modification_of_pic_nums_idc together with abs_diff_pic_num_minusl or long_term_pic_num specifies which of the
reference pictures are re-mapped. The values of modification_of pic_nums_idc are specified in Table 7-7. The value of
the first modification_of pic_nums_idc that follows immediately after ref pic_list modification_flag 10 or
ref_pic_list_modification_flag_I1 shall not be equal to 3.

Table 7-7 — modification_of _pic_nums_idc operations for modification of reference picture lists

modification_of_pic_nums_idc modification specified

0 abs_diff_pic_num_minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff_pic_num_minusl is present and corresponds to a difference to add
to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for modification of the initial reference picture list

abs_diff_pic_num_minusl plus 1 specifies the absolute difference between the picture number of the picture being moved
to the current index in the list and the picture number prediction value. abs_diff_pic_num_minusl shall be in the range of
0 to MaxPicNum — 1. The allowed values of abs_diff pic_num_minusl are further restricted as specified in
clause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference
frames or complementary reference field pairs marked as "used for long-term reference”. When decoding a coded field,
long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as "used for long-
term reference".

7.4.3.2 Prediction weight table semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma_log2_weight_denom shall be in the range of 0 to 7, inclusive.

chroma_log2_weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma_log2_weight_denom shall be in the range of 0 to 7, inclusive.

luma_weight_l0_flag equal to 1 specifies that weighting factors for the luma component of list O prediction are present.
luma_weight_10_flag equal to 0 specifies that these weighting factors are not present.

luma_weight_I0[i] is the weighting factor applied to the luma prediction value for list 0 prediction using RefPicListO[i].
When luma_weight_[0_flag is equal to 1, the value of luma_weight_IO[i] shall be in the range of —128 to 127, inclusive.
When luma_weight_l0_flag is equal to 0, luma_weight_IO[i] shall be inferred to be equal to 2'umalog2 weight denom fqp
RefPicListO[i].

luma_offset_IO[i] is the additive offset applied to the luma prediction value for list 0 prediction using RefPicListO[i].
The value of luma_offset_I0[i] shall be in the range of —128 to 127, inclusive. When luma_weight_I0_flag is equal to 0,
luma_offset_IO[i] shall be inferred as equal to O for RefPicListO[i].

chroma_weight_l0_flag equal to 1 specifies that weighting factors for the chroma prediction values of list O prediction
are present. chroma_weight_I0_flag equal to 0 specifies that these weighting factors are not present.

chroma_weight_I0[i][j] is the weighting factor applied to the chroma prediction values for list O prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. When chroma_weight_10_flag is equal to 1, the value of
chroma_weight_IO[i][j] shall be in the range of —128 to 127, inclusive. When chroma_weight_l0_flag is equal to 0,
chroma_weight_IO[i][j] shall be inferred to be equal to 2¢hroma_logz_weight denom o RefPjcListO] i].

chroma_offset I0[i][j] is the additive offset applied to the chroma prediction values for list O prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. The value of chroma_offset_I0[i][j] shall be in the range
of —128 to 127, inclusive. When chroma_weight_10_flag is equal to 0, chroma_offset 10[i][j] shall be inferred to be
equal to 0 for RefPicListO[i].

luma_weight_I1_flag, luma_weight_I1, luma_offset_l1, chroma_weight_I1_flag, chroma_weight_|1,
chroma_offset 11 have the same semantics as luma_weight 10 flag, luma_weight 10, luma_offset_lO,
chroma_weight_10_flag, chroma_weight 10, chroma_offset 10, respectively, with 10, list 0, and ListO replaced by 11, list 1,
and List1, respectively.

Rec. ITU-T H.264 (08/2021) 03

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output_of_prior_pics_flag, long_term_reference_flag, adaptive ref pic_marking_mode_flag,
memory_management_control_operation, difference_of_pic_nums_minusl, long_term_frame_idx, long_term_pic_num,
and max_long_term_frame_idx_plusl specify marking of the reference pictures.

The marking of a reference picture can be "unused for reference”, "used for short-term reference", or "used for long-term
reference”, but only one among these three. When a reference picture is referred to as being marked as "used for reference”,
this collectively refers to the picture being marked as "used for short-term reference™ or "used for long-term reference"
(but not both). A reference picture that is marked as "used for short-term reference" is referred to as a short-term reference
picture. A reference picture that is marked as "used for long-term reference™ is referred to as a long-term reference picture.

The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the primary
coded picture. When one or more redundant coded pictures are present, the content of the decoded reference picture
marking syntax structure shall be the same in all slice headers of a redundant coded picture with a particular value of
redundant_pic_cnt.
NOTE 1 — It is not required that the content of the decoded reference picture marking syntax structure in a redundant coded picture
with a particular value of redundant_pic_cnt is identical to the content of the decoded reference picture marking syntax structure in
the corresponding primary coded picture or a redundant coded picture with a different value of redundant_pic_cnt. However, as
specified in clause 7.4.3, the content of the decoded reference picture marking syntax structure in a redundant coded picture is
constrained in the way that the marking status of reference pictures and the value of frame_num after the decoded reference picture
marking process in clause 8.2.5 must be identical regardless whether the primary coded picture or any redundant coded picture of
the access unit would be decoded.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows:

— If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure is inferred to be equal to 2.

— Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking repetition
SEI message as specified in Annex D), the syntax category of the decoded reference picture marking syntax structure
is inferred to be equal to 5.

no_output_of prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of prior_pics_flag has no effect on the decoding process. When the IDR picture is not the first IDR picture
in the bitstream and the value of PicWidthInMbs, FrameHeightinMbs, or max_dec_frame_buffering derived from the
active sequence parameter set is different from the value of PicWidthinMbs, FrameHeightinMbs, or
max_dec_frame_buffering derived from the sequence parameter set active for the preceding picture,
no_output_of prior_pics_flag equal to 1 may (but should not) be inferred by the decoder, regardless of the actual value of
no_output_of prior_pics_flag.

long_term_reference_flag equal to O specifies that the MaxLongTermFrameldx variable is set equal to "no long-term
frame indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference_flag equal to 1
specifies that the MaxLongTermFrameldx variable is set equal to 0 and that the current IDR picture is marked "used for
long-term reference” and is assigned LongTermFrameldx equal to 0. When max_num_ref frames is equal to O,
long_term_reference_flag shall be equal to 0.

adaptive_ref pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-8. adaptive_ref pic_marking_mode_flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to
Max(max_num_ref frames, 1).

Table 7-8 — Interpretation of adaptive_ref_pic_marking_mode_flag

adaptive_ref_pic_marking_mode_flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as "unused for reference” and to assign long-term
frame indices.

94 Rec. ITU-T H.264 (08/2021)

memory_management_control_operation specifies a control operation to be applied to affect the reference picture
marking. The memory_management_control_operation syntax element is followed by data necessary for the operation
specified by the value of memory_management_control_operation. The values and control operations associated with
memory_management_control_operation are specified in Table 7-9. The memory_management_control_operation syntax
elements are processed by the decoding process in the order in which they appear in the slice header, and the semantics
constraints expressed for each memory_management_control_operation apply at the specific position in that order at which
that individual memory_management_control_operation is processed.

For interpretation of memory_management_control_operation, the term reference picture is interpreted as follows:

— If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary
reference field pair.

— Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a
reference frame.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified reference picture is
marked as "used for short-term reference” when the memory_management_control_operation is processed by the decoding
process.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a reference picture that is marked as "used for long-term reference” when the
memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 in a slice header unless the specified reference picture is
marked as "used for short-term reference™ when the memory_management_control_operation is processed by the decoding
process.

memory_management_control_operation shall not be equal to 3 or 6 if the value of the variable MaxLongTermFrameldx
is equal to "no long-term frame indices" when the memory_management_control_operation is processed by the decoding
process.

Not more than one memory_management_control_operation equal to 4 shall be present in a slice header.
Not more than one memory_management_control_operation equal to 5 shall be present in a slice header.
Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

memory_management_control_operation shall not be equal to 5 in a slice header wunless no
memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

A memory_management_control_operation equal to 5 shall not follow a memory_management_control_operation equal
to 6 in the same slice header.

When a memory_management_control_operation equal to 6 is present, any memory_management_control_operation
equal to 2, 3, or 4 that follows the memory_management_control_operation equal to 6 within the same slice header shall
not specify the current picture to be marked as "unused for reference".

NOTE 2 — These constraints prohibit any combination of multiple memory_management_control_operation syntax elements that
would specify the current picture to be marked as "unused for reference”. However, some other combinations of
memory_management_control_operation syntax elements are permitted that may affect the marking status of other reference
pictures more than once in the same slice header. In particular, it is permitted for a memory_management_control_operation equal
to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the same slice
header by a memory_management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to subsequently
be marked as "unused for reference".

Rec. ITU-T H.264 (08/2021) 95

Table 7-9 — Memory management control operation (memory_management_control_operation) values

memory_management_control_operation | Memory Management Control Operation

0 End memory_management_control_operation
syntax element loop

1 Mark a short-term reference picture as
"unused for reference"

2 Mark a long-term reference picture as
"unused for reference"

3 Mark a short-term reference picture as

"used for long-term reference" and assign a
long-term frame index to it

4 Specify the maximum long-term frame index
and mark all long-term reference pictures
having long-term frame indices greater than
the maximum value as "unused for reference"

5 Mark all reference pictures as
"unused for reference” and set the
MaxLongTermFrameldx variable to
"no long-term frame indices"

6 Mark the current picture as
"used for long-term reference" and assign a
long-term frame index to it

When decoding a field and a memory_management_control_operation command equal to 3 is present that assigns a long-
term frame index to a field that is part of a short-term reference frame or part of a complementary reference field pair,
another memory_management_control_operation command (equal to 3 or 6) to assign the same long-term frame index to
the other field of the same frame or complementary reference field pair shall be present in the same decoded reference
picture marking syntax structure.

NOTE 3 — The above requirement must be fulfilled even when the field referred to by the memory_management_control_operation

equal to 3 is subsequently marked as "unused for reference” (for example when a memory_management_control_operation equal
to 2 is present in the same slice header that causes the field to be marked as "unused for reference").

NOTE 4 — The above requirement has the following implications:

— When a memory_management_control_operation equal to 3 is present that assigns a long-term frame index to a field that is part
of a reference frame or complementary reference field pair with both fields marked as "used for short-term reference” (when
processing the memory_management_control_operation equal to 3), another memory_management_control_operation equal
to 3 must also be present in the same decoded reference picture marking syntax structure that assigns the same long-term frame
index to the other field of the reference frame or complementary reference field pair.

— When the current picture is the second field (in decoding order) of a complementary reference field pair and a
memory_management_control_operation equal to 3 is present in the decoded reference picture marking syntax structure of the
current picture that assigns a long-term frame index to the first field (in decoding order) of the complementary reference field
pair, a memory_management_control_operation equal to 6 must be present in the same decoded reference picture marking
syntax structure that assigns the same long-term frame index to the second field of the complementary reference field pair.

When the first field (in decoding order) of a complementary reference field pair included a long_term_reference_flag equal
to 1 or a memory_management_control_operation command equal to 6, the decoded reference picture marking syntax
structure for the second field of the complementary reference field pair shall contain a
memory_management_control_operation command equal to 6 that assigns the same long-term frame index to the second
field.

NOTE 5 — The above requirement must be fulfilled even when the first field of the complementary reference field pair is

subsequently marked as "unused for reference” (for example, when a memory_management_control_operation equal to 2 is present
in the slice header of the second field that causes the first field to be marked as "unused for reference").

When the second field (in decoding order) of a complementary reference field pair includes a
memory_management_control_operation command equal to 6 that assigns a long-term frame index to this field and the
first field of the complementary reference field pair is marked as "used for short-term reference” when the
memory_management_control_operation command equal to 6 is processed by the decoding process, the decoded reference
picture marking syntax structure of that second field shall contain either a memory_management_control_operation
command equal to1 that marks the first field of the complementary field pair as "unused for reference" or a
memory_management_control_operation command equal to 3 that marks the first field of the complementary field pair as
"used for long-term reference" and assigns the same long-term frame index to the first field.

96 Rec. ITU-T H.264 (08/2021)

NOTE 6 — The above constraints specify that when both fields of a frame or a complementary field pair are marked as "used for
reference" after processing all memory_management_control_operation commands of the decoded reference picture marking syntax
structure, either both fields must be marked as "used for short-term reference™ or both fields must be marked as "used for long-term
reference”. When both fields are marked as "used for long-term reference", the same long-term frame index must be assigned to
both fields.

difference_of _pic_nums_minusl is used (with memory_management_control_operation equal to 3 or 1) to assign a long-
term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for reference".
When the associated memory_management_control_operation is processed by the decoding process, the resulting picture
number derived from difference_of_pic_nums_minusl shall be a picture number assigned to one of the reference pictures
marked as "used for reference™ and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows:

— If field_pic_flag is equal to O, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.
NOTE 7 — When field_pic_flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for reference" or a frame in which both
fields are marked as "used for reference"”. In particular, when field_pic_flag is equal to 0, the marking of a non-paired
field or a frame in which a single field is marked as "used for reference” cannot be affected by a
memory_management_control_operation equal to 1.

— Otherwise (field_pic_flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory_management_control_operation is processed by the
decoding process, long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference
pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows:

— If field_pic_flag is equal to O, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.
NOTE 8 — When field_pic_flag is equal to 0, the resulting long-term picture number must be a long-term picture number
assigned to a complementary reference field pair in which both fields are marked as "used for reference” or a frame in
which both fields are marked as "used for reference”. In particular, when field_pic_flag is equal to 0, the marking of a
non-paired field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory_management_control_operation equal to 2.

— Otherwise (field_pic_flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term frame
index to a picture. When the associated memory _management_control_operation is processed by the decoding process,
the value of long_term_frame_idx shall be in the range of 0 to MaxLongTermFrameldx, inclusive.

max_long_term_frame_idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for long-term
reference pictures (until receipt of another wvalue of max_long_term_ frame_idx_plusl). The value of
max_long_term_frame_idx_plusl shall be in the range of 0 to max_num_ref_frames, inclusive.

7.4.4 Slice data semantics
cabac_alignment_one_bit is a bit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or for
which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred
to as a B macroblock type. The value of mb_skip_run shall be in the range of 0 to PicSizeInMbs — CurrMbAddr, inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be inferred
to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when decoding a B
slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B macroblock type.
mb_skip_flag equal to 0 specifies that the current macroblock is not skipped.

mb_field_decoding_flag equal to O specifies that the current macroblock pair is a frame macroblock pair.
mb_field_decoding_flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a
frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field macroblock
pair are referred to in the text as field macroblocks.

Rec. ITU-T H.264 (08/2021) 97

When MbaffFrameFlag is equal to 0 (mb_field_decoding_flag is not present), mb_field_decoding_flag is inferred to be
equal to field_pic_flag.

When MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is not present for both the top and the bottom macroblock
of a macroblock pair, the value of mb_field_decoding_flag shall be inferred as follows:

— If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same slice,
the value of mb_field_decoding_flag is inferred to be equal to the value of mb_field_decoding_flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

— Otherwise, if there is no neighbouring macroblock pair immediately to the left of the current macroblock pair in the
same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the same
slice, the value of mb_field_decoding_flag is inferred to be equal to the value of mb_field_decoding_flag for the
neighbouring macroblock pair immediately above the current macroblock pair,

— Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the current
macroblock pair in the same slice), the value of mb_field_decoding_flag is inferred to be equal to 0.
NOTE — When MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is not present for the top macroblock of a macroblock
pair (because the top macroblock is skipped), a decoder must wait until mb_field_decoding_flag for the bottom macroblock is read
(when the bottom macroblock is not skipped) or the value of mb_field_decoding_flag is inferred as specified above (when the bottom
macroblock is also skipped) before it starts the decoding process for the top macroblock.

end_of slice_flag equal to O specifies that another macroblock is following in the slice. end_of slice_flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in clause 8.2.2.

7.4.5 Macroblock layer semantics
mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents the
value of mb_type, the name of mb_type, the number of macroblock partitions used (given by the NumMbPart(mb_type)
function), the prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the
MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given by the
MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by "na". In the text, the value of
mb_type may be referred to as the macroblock type, the value of MbPartPredMode() may be referred to in the text by
"macroblock (partition) prediction mode”, and a value X of MbPartPredMode() may be referred to in the text by "X
macroblock (partition) prediction mode" or as "X prediction macroblocks".

Table 7-10 shows the allowed collective macroblock types for each slice_type.

NOTE 1 — There are some macroblock types with Pred_LO macroblock (partition) prediction mode(s) that are classified as B
macroblock types.

Table 7-10 — Allowed collective macroblock types for slice_type

slice_type allowed collective macroblock types

| (slice) | (see Table 7-11) (macroblock types)

P (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)
B (slice) B (see Table 7-14) and | (see Table 7-11) (macroblock types)
Sl (slice) Sl (see Table 7-12) and | (see Table 7-11) (macroblock types)
SP (slice) P (see Table 7-13) and | (see Table 7-11) (macroblock types)

transform_size 8x8_flag equal to 1 specifies that for the current macroblock the transform coefficient decoding process
and picture construction process prior to deblocking filter process for residual 8x8 blocks shall be invoked for luma
samples, and when ChromaArrayType == 3 also for Ch and Cr samples. transform_size_8x8_flag equal to O specifies
that for the current macroblock the transform coefficient decoding process and picture construction process prior to
deblocking filter process for residual 4x4 blocks shall be invoked for luma samples, and when ChromaArrayType ==
also for Cb and Cr samples. When transform_size_8x8 flag is not present in the bitstream, it shall be inferred to be equal
to 0.

NOTE 2 - When the current macroblock prediction mode MbPartPredMode(mb_type, 0) is equal to Intra_16x16,
transform_size_8x8_flag is not present in the bitstream and then inferred to be equal to 0.

08 Rec. ITU-T H.264 (08/2021)

When sub_mb_type[mbPartldx] (see clause 7.4.5.2) is present in the bitstream for all 8x8 blocks indexed by
mbPartldx = 0..3, the variable noSubMbPartSizelLessThan8x8Flag indicates whether for each of the four 8x8 blocks the

corresponding SubMbPartWidth(sub_mb_type[mbPartldx]) and SubMbPartHeight(sub_mb_type[mbPartldx]) are
both equal to 8.

NOTE 3 — When noSubMbPartSizeLessThan8x8Flag is equal to O and the current macroblock type is not equal to I_NxN,
transform_size_8x8_flag is not present in the bitstream and then inferred to be equal to 0.

Macroblock types that may be collectively referred to as | macroblock types are specified in Table 7-11.

The macroblock types for I slices are all I macroblock types.

Rec. ITU-T H.264 (08/2021) 99

Table 7-11 — Macroblock types for 1 slices

g ©
g 2 5 =
b D)

g 2 2~ = S 2
@ = & =< S c =
o ! o T g e I b=
> [N Lo o = ©
Hl Y Kz o 2’ © o Q
o © I | v, % <
1S @ IS <2 o [} o
s £ g~ g 3 5
= E:)

0 I_NxN 0 Intra_4x4 na Equation 7-36 | Equation 7-36

0 I_NxN 1 Intra_8x8 na Equation 7-36 | Equation 7-36
1 1_16x16 0 0 0 na Intra_16x16 0 0 0
2 | 16x16 1 0 0 na Intra_16x16 1 0 0
3 | 16x16 2 0 0 na Intra_16x16 2 0 0
4 | 16x16 3 0 0 na Intra_16x16 3 0 0
5 1_16x16_0_1 0 na Intra_16x16 0 1 0
6 1_16x16 1 1 0 na Intra_16x16 1 1 0
7 1_16x16_2_1 0 na Intra_16x16 2 1 0
8 1_16x16 3 1 0 na Intra_16x16 3 1 0
9 | 16x16 0 2 0 na Intra_16x16 0] 2 0
10 1_16x16 1 2 0 na Intra_16x16 1 2 0
11 1_16x16 2 2 0 na Intra_16x16 2 2 0
12 1_16x16_3_2 0 na Intra_16x16 3 2 0
13 1_16x16_0_0_1 na Intra_16x16 0 0 15
14 1_16x16_1 0 1 na Intra_16x16 1 0 15
15 1 _16x16 2 0 1 na Intra_16x16 2 0 15
16 1_16x16 3 0_ 1 na Intra_16x16 3 0 15
17 1_16x16 0 1 1 na Intra_16x16 0 1 15
18 1_16x16_1_1_1 na Intra_16x16 1 1 15
19 1_16x16_2_1_1 na Intra_16x16 2 1 15
20 1_16x16_3_1 1 na Intra_16x16 3 1 15
21 1_16x16 0 2 1 na Intra_16x16 0 2 15
22 1_16x16 1 2 1 na Intra_16x16 1 2 15
23 1_16x16 2 2 1 na Intra_16x16 2 2 15
24 1_16x16 3 2 1 na Intra_16x16 3 2 15
25 I_PCM na na na na na

100 Rec. ITU-T H.264 (08/2021)

The following semantics are assigned to the macroblock types in Table 7-11:

— |_NxN: A mnemonic name for mb_type equal to 0 with MbPartPredMode(mb_type, 0) equal to Intra_4x4 or
Intra_8x8.

~ 1.16x16.0.00, 1.16x16.1.00, 1.16x162 00, 1 16x163 00, 1 16x16.0 10, 1 16x16 1 1 0,
| 16x16 2 1 0, 1 16x16 3 1 0, 1 16x16 0 2 0, 1 16x16_1 20, | _16x16_2 2 0, 1 _16x16 3 2 0,
| 16x16_ 0 0 1, | 16x16 1 0 1, 1 16x16 2 0 1, 1 16x16.3 0 1, 1 16x16.0 1 1, 1 16x16 1 1 1,
| 16x16 2 1 1, 1 16x16.3 1 1, 1 16x16 0 2 1, 1 16x16 1 2 1, 1 16x16 2 2 1, 1 16x16 3 2 1. th

macroblock is coded as an Intra_16x16 prediction macroblock.

To each Intra_16x16 prediction macroblock, an Intral6x16PredMode is assigned, which specifies the Intra_16x16
prediction mode, and values of CodedBlockPatternLuma and CodedBlockPatternChroma are assigned as specified in
Table 7-11.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra_4x4 prediction process is invoked as
specified in clause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_8x8 specifies the macroblock prediction mode and specifies that the Intra_8x8 prediction process is invoked as
specified in clause 8.3.2. Intra_8x8 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked as
specified in clause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I_PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as the SI macroblock type is specified in Table 7-12.

The macroblock types for Sl slices are specified in Tables 7-12 and 7-11. The mb_type value 0 is specified in Table 7-12
and the mb_type values 1 to 26 are specified in Table 7-11, indexed by subtracting 1 from the value of mb_type.

Table 7-12 — Macroblock type with value 0 for Sl slices

g ©

) S g

L 3 8 < |

= o~ S O] c

=) Eo c P

<5} | - o - [}
o o T o @ L =1
> [= o Qo b= <
= et o =3 o
I u— Q& <9 o ~
o o t'_QI < ~ =}
IS 3} < o [5} K=}
g a € — S o

S -§"’ o o} S

= (<5}

2 g E

- o o

8 @)

0 Sl Intra_4x4 | na | Equation 7-36 | Equation 7-36

The following semantics are assigned to the macroblock type in Table 7-12:
— The SI macroblock is coded as Intra_4x4 prediction macroblock.
Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-13.

The macroblock types for P and SP slices are specified in Tables 7-13 and 7-11. mb_type values 0 to 4 are specified in
Table 7-13 and mb_type values 5 to 30 are specified in Table 7-11, indexed by subtracting 5 from the value of mb_type.

Rec. ITU-T H.264 (08/2021) 101

Table 7-13 — Macroblock type values 0 to 4 for P and SP slices

[<5] (<%} <5}
3] | E [<5) = O_ = H_ S o 2
o o oo T o T o o L QO
= £ S= o8 g8 22| L&
| o« =7 a2 a2 et I I =y
; ; Eg | td | G2 | €8] £t
5 o re!
5 2= | && £ | - 3~
z p =
0 P_LO_16x16 1 Pred_LO na 16 16
1 P_LO_LO_16x8 2 Pred_LO Pred_LO 16 8
2 P_LO LO_8x16 2 Pred_LO Pred_LO 8 16
3 P_8x8 4 na na 8 8
4 P_8x8ref0 4 na na 8 8
inferred P_Skip 1 Pred_LO na 16 16

The following semantics are assigned to the macroblock types in Table 7-13:

— P_LO0_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

— P_LO_LO_MXxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two
luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively.

— P_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartldx] with mbPartldx being the

macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type
of the corresponding sub-macroblock (see clause 7.4.5.2).

— P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref_idx_IO[mbPartldx]
with mbPartldx = 0..3) is present in the bitstream and ref _idx_I0[mbPartldx] shall be inferred to be equal to 0 for all
sub-macroblocks of the macroblock (with indices mbPartldx = 0..3).

— P_Skip: no further data is present for the macroblock in the bitstream.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in

Table 7-13:

— Pred_LO: specifies that the Inter prediction process is invoked using list O prediction. Pred_LO is an Inter macroblock
prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction mode (for
macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-13, the macroblock is coded in an Inter macroblock
prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-14.

The macroblock types for B slices are specified in Tables 7-14 and 7-11. The mb_type values 0 to 22 are specified in
Table 7-14 and the mb_type values 23 to 48 are specified in Table 7-11, indexed by subtracting 23 from the value of

mb_type.

102 Rec. ITU-T H.264 (08/2021)

Table 7-14 — Macroblock type values 0 to 22 for B slices

5] [<5) [<5)
5 o go i .| E~
@ = 3w =< = So 2
o Qo oo T o T o o L O
2 E Sz e 8 22| T2
[“ | a2 a2 C Flay
Qo o [= o e e T O © Q
S @ SE s 2 s 2 e Qe
< O — O~ E 2
z p =
0 B_Direct_16x16 na Direct na 8 8
1 B_LO_16x16 1 Pred_LO na 16 16
2 B_L1 16x16 1 Pred_L1 na 16 16
3 B_Bi_16x16 1 BiPred na 16 16
4 B_LO_LO 16x8 2 Pred_LO Pred_LO 16 8
5 B_LO LO 8x16 2 Pred_LO Pred_LO 8 16
6 B L1 L1 16x8 2 Pred_L1 Pred_L1 16 8
7 B_L1 L1 8x16 2 Pred_L1 Pred_L1 8 16
8 B_LO L1 16x8 2 Pred_LO Pred_L1 16 8
9 B_LO_L1_8x16 2 Pred_LO Pred_L1 8 16
10 B_L1 LO_16x8 2 Pred_L1 Pred_LO 16 8
11 B_L1 L0 8x16 2 Pred_L1 Pred_LO 8 16
12 B_LO_Bi_16x8 2 Pred_LO BiPred 16 8
13 B_LO_Bi_8x16 2 Pred_LO BiPred 8 16
14 B_L1 Bi_16x8 2 Pred_L1 BiPred 16 8
15 B_L1 Bi 8x16 2 Pred_L1 BiPred 8 16
16 B_Bi_LO_16x8 2 BiPred Pred_LO 16 8
17 B_Bi_L0 _8x16 2 BiPred Pred_LO 8 16
18 B_Bi_L1 16x8 2 BiPred Pred_L1 16 8
19 B_Bi_L1 8x16 2 BiPred Pred_L1 8 16
20 B_Bi_Bi_16x8 2 BiPred BiPred 16 8
21 B_Bi_Bi_8x16 2 BiPred BiPred 8 16
22 B _8x8 4 na na 8 8
inferred B_Skip na Direct na 8 8

The following semantics are assigned to the macroblock types in Table 7-14:

B_Direct_16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct_16x16), and MbPartHeight(B_Direct_16x16) are used in the derivation
process for motion vectors and reference frame indices in clause 8.4.1 for direct mode prediction.

B_X_16x16 with X being replaced by LO, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B_X_16x16 with X being replaced by either L0 or L1, one motion vector difference and one reference index is present

Rec. ITU-T H.264 (08/2021) 103

in the bitstream for the macroblock. For a macroblock with type B_X_16x16 with X being replaced by Bi, two motion
vector differences and two reference indices are present in the bitstream for the macroblock.

— B_X0_X1_MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by LO, L1, or
Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma partitions
of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma samples,
respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either LO or L1, one motion vector
difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1 with X0 or X1
being replaced by Bi, two motion vector differences and two reference indices are present in the bitstream for the
macroblock partition.

— B_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartldx] with mbPartldx being the
macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type
of the corresponding sub-macroblock (see clause 7.4.5.2).

— B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
clause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in
Table 7-14:

— Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B_Direct_16x16) in the bitstream. Direct is an Inter macroblock prediction mode (for macroblocks that are not
partitioned) and an Inter macroblock partition prediction mode (for macroblocks that are partitioned, see Table 7-18).

— Pred_LO: the semantics specified for Table 7-13 apply.

— Pred_L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred_L1 is an Inter macroblock
prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction mode (for
macroblocks that are partitioned).

— BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction
mode (for macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-14, the macroblock is coded in an Inter macroblock
prediction mode.

pcm_alignment_zero_bit is a bit equal to O.

pcm_sample_luma[i] is a sample value. The pcm_sample_luma[i] values represent luma sample values in the raster
scan within the macroblock. The number of bits used to represent each of these samples is BitDepthy.

pcm_sample_chroma] i] is asample value. The first MbWidthC * MbHeightC pcm_sample_chroma[i] values represent
Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample_chroma[i] values represent Cr sample values in the raster scan within the macroblock. The number of bits
used to represent each of these samples is BitDepthc.

coded_block_pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient levels. When coded_block_pattern is present in the bitstream, the variables
CodedBlockPatternLuma and CodedBlockPatternChroma are derived as

CodedBlockPatternLuma = coded_block_pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16 (7-36)

When the macroblock type is not equal to P_Skip, B_Skip, or I_PCM, the following applies:

— If the macroblock prediction mode is equal Intra_16x16, the following applies:
— If ChromaArrayType is not equal to 3, the value of CodedBlockPatternLuma specifies the following.

— If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma component of the
macroblock are equal to O for all 16 of the 4x4 blocks in the 16x16 luma block.

— Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least one
of the AC transform coefficient levels of the luma component of the macroblock shall be non-zero, and the
AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the 16x16 block.

104 Rec. ITU-T H.264 (08/2021)

— Otherwise (ChromaArrayType is equal to 3), the value of CodedBlockPatternLuma specifies the following.

— If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma, Cb, and Cr
components of the macroblock are equal to O for all 16 of the 4x4 blocks in the luma, Cb, and Cr components
of the macroblock.

— Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least one
of the AC transform coefficient levels of the luma, Cb, or Cr components of the macroblock shall be non-
zero, and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the luma Cb, and
Cr components of the macroblock.

— Otherwise (the macroblock prediction mode is not equal to Intra_16x16), coded_block pattern is present in the
bitstream, and the following applies:

— If ChromaArrayType is not equal to 3, each of the four LSBs of CodedBlockPatternLuma specifies, for one of
the four 8x8 luma blocks of the macroblock, the following.

— If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the
luma transform blocks in the 8x8 luma block are equal to zero.

— Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform
coefficient levels of one or more of the luma transform blocks in the 8x8 luma block shall be non-zero
valued and the transform coefficient levels of the corresponding transform blocks are scanned.

— Otherwise (ChromaArrayType is equal to 3), each of the four LSBs of CodedBlockPatternLuma specifies, for
one of the four 8x8 luma blocks of the macroblock, the following.

— If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the
luma, Cb, and Cr transform blocks in the 8x8 luma block are equal to zero.

— Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform
coefficient levels of one or more of the luma, Cb, or Cr transform blocks in the 8x8 luma block shall be
non-zero valued and the transform coefficient levels of the corresponding transform blocks are scanned.

When the macroblock type is not equal to P_Skip, B_Skip, or |_PCM, CodedBlockPatternChroma is interpreted as follows:
— If ChromaArrayType is not equal to 0 or 3, CodedBlockPatternChroma is specified in Table 7-15.

— Otherwise (ChromaArrayType is equal to 0 or 3), the bitstream shall not contain data that result in a derived value of
CodedBlockPatternChroma that is not equal to 0.

Table 7-15 — Specification of CodedBlockPatternChroma values

CodedBlockPatternChroma | Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

mb_gp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_gp_delta shall be in the
range of —(26 + QpBdOffsety / 2) to +(25 + QpBdOffsety / 2), inclusive. mb_qp_delta shall be inferred to be equal to 0
when it is not present for any macroblock (including P_Skip and B_Skip macroblock types).

The value of QPy is derived as

QPy = ((QPyprev + mb_gp_delta + 52 + 2 * QpBdOffsety) % (52 + QpBdOffsety)) — QpBdOffsety (7-37)
where QPy prev is the luma quantization parameter, QPy, of the previous macroblock in decoding order in the current slice.

For the first macroblock in the slice QPv prev is initially set equal to SliceQPy derived in Equation 7-30 at the start of each
slice.

The value of QP'y is derived as
QP’v = QPy + QpBdOffsety (7-38)

The variable TransformBypassModeFlag is derived as follows:

Rec. ITU-T H.264 (08/2021) 105

— If gpprime_y_zero_transform_bypass_flag is equal to 1 and QP’y is equal to 0, TransformBypassModeFlag is set
equal to 1.

— Otherwise (gpprime_y_zero_transform_bypass_flag is equal to 0 or QP is not equal to 0),
TransformBypassModeFlag is set equal to 0.

7.4.5.1 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intradx4_pred_mode_flag[luma4x4Blkldx] and rem_intra4x4 pred_mode[lumadx4Blkldx] specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4BIkldx = 0..15. When ChromaArrayType is equal to 3,
prev_intradx4_pred_mode_flag[luma4x4Blkldx] and rem_intradx4 pred_mode[luma4x4Blkldx] also specify the
Intra_4x4 prediction of the 4x4 Cb block with luma4x4BIkldx equal to cb4x4BIkldx for ch4x4Blkldx = 0..15 and the
Intra_4x4 prediction of the 4x4 Cr block with luma4x4BIkldx equal to cr4x4Blkldx for crax4Blkldx = 0..15.

prev_intra8x8 pred_mode_flag[luma8x8Blkldx] and rem_intra8x8 pred_mode[luma8x8Blkldx] specify the
Intra_8x8 prediction of the 8x8 luma block with index luma8x8BIkldx = 0..3. When ChromaArrayType is equal to 3,
prev_intra8x8_pred_mode_flag[luma8x8BIkldx] and rem_intra8x8_pred_mode[luma8x8Blkldx] also specify the
Intra_8x8 prediction of the 8x8 Cb block with luma8x8Blkldx equal to ch8x8Blkldx for ch8x8Blkldx = 0..3 and the
Intra_8x8 prediction of the 8x8 Cr block with index luma8x8Blkldx equal to cr8x8BIkldx for cr8x8BIkldx = 0..3.

intra_chroma_pred_mode specifies, when ChromaArrayType is equal to 1 or 2, the type of spatial prediction used for
chroma in macroblocks using Intra_4x4, Intra_8x8, or Intra_16x16 prediction, as shown in Table 7-16. The value of
intra_chroma_pred_mode shall be in the range of 0 to 3, inclusive.

Table 7-16 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertical
3 Plane

ref_idx_IO[mbPartldx] when present, specifies the index in reference picture list O of the reference picture to be used for
prediction.

The range of ref_idx_IO[mbPartldx], the index in list 0 of the reference picture, and, if applicable, the parity of the field
within the reference picture used for prediction are specified as follows:

— If MbaffFrameFlag is equal to 0 or mb_field_decoding_flag is equal to 0, the value of ref_idx_IO[mbPartldx] shall
be in the range of 0 to num_ref_idx_l0_active_minusl, inclusive.

— Otherwise (MbaffFrameFlag is equal tol and mb_field_decoding flag is equal to1), the value of
ref _idx_IO[mbPartldx] shall be in the range of 0 to 2 * num_ref_idx_I0_active_minusl + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref_idx_IO[mbPartldx] shall be inferred to be
equal to 0.

ref_idx_I1[mbPartldx] has the same semantics as ref_idx_10, with 10 and list O replaced by 11 and list 1, respectively.

mvd_IO0[mbPartldx][0][compldx] specifies the difference between a list 0 motion vector component to be used and its
prediction. The index mbPartldx specifies to which macroblock partition mvd_I0 is assigned. The partitioning of the
macroblock is specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order
and is assigned compldx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
compldx = 1. The value of mvd_IO[mbPartldx][O][compldx] shall be in the range of —8192 to 8191.75, inclusive. The
range of mvd_IO[mbPartldx][0][compldx] is also constrained indirectly by constraints on the motion vector variable
values derived from it as specified in Annex A.

mvd_I1[mbPartldx][0][compldx] has the same semantics as mvd_l0, with 10 and list O replaced by I1 and list 1,
respectively.

106 Rec. ITU-T H.264 (08/2021)

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, and B macroblock types. Each table presents
the value of sub_mb_type[mbPartldx], the name of sub_mb_type[mbPartldx], the number of sub-macroblock partitions
used (given by the NumSubMbPart(sub_mb_type[mbPartldx]) function), and the prediction mode of the sub-
macroblock (given by the SubMbPredMode(sub_mb_type[mbPartldx]) function). In the text, the value of
sub_mb_type[mbPartldx] may be referred to by "sub-macroblock type". In the text, the value of SubMbPredMode() may
be referred to by "sub-macroblock prediction mode" or "macroblock partition prediction mode".

The interpretation of sub_mb_type[mbPartldx] for P macroblock types is specified in Table 7-17, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present.

Table 7-17 — Sub-macroblock types in P macroblocks

X X = x X x
S S S S S ke
£ £ <E | gt st | zF
IS IS S < B 5 & o &
o =g 5S o =0 T o
€ o E S E B E TE T E
T ET 2'F Qs Ny ST
o3 T o S o S o & a T a
2 zZ2 22 s2 s 2 2
| I E% 25 =5 >
! o S o S a 2 o S o
€ € ZE » E » E A E
g < g < < <
]]] > 3 =]
(%] (%] w (%] (%] w
inferred na na na na na
0 P_LO 8x8 1 Pred_LO 8 8

1 P_LO 8x4 2 Pred_LO 8 4

2 P_LO 4x8 2 Pred_LO 4 8

3 P_LO 4x4 4 Pred_LO 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-17:

— P_LO_MXxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma

partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma samples,
respectively.

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction modes)
specified by SubMbPredMode() in Table 7-17:

Pred_LO: see semantics for Table 7-13.

Rec. ITU-T H.264 (08/2021) 107

The interpretation of sub_mb_type[mbPartldx] for B macroblock types is specified in Table 7-18, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present, and the inferred value "mb_type"
specifies that the name of sub_mb_type[mbPartldx] is the same as the name of mb_type for this case.

Table 7-18 — Sub-macroblock types in B macroblocks

X x X = X x

3 S S kel S S

£ £ < E 2B st | EE

< < 5 © B 5 o G

) P gre) rogte)) <o T o

1S SE S E Qg E TE T E

T E'T 2% s Ky S

o T o S a rol=2 5 R

2 z2z 2> sS2 sz | €=

o o 54 5 o 5 o sS4

IS IS ZEe 7 E » E & E

< < < g < <

2 @ 2 2 @ @
inferred mb_type 4 Direct 4 4

0 B_Direct_8x8 4 Direct 4 4

1 B_LO_8x8 1 Pred_LO 8 8

2 B_L1_8x8 1 Pred_L1 8 8

3 B_Bi_8x8 1 BiPred 8 8

4 B_LO_8x4 2 Pred_LO 8 4

5 B_LO_4x8 2 Pred_LO 4 8

6 B_L1 8x4 2 Pred_L1 8 4

7 B_L1 4x8 2 Pred_L1 4 8

8 B_Bi_8x4 2 BiPred 8 4

9 B_Bi_4x8 2 BiPred 4 8

10 B_LO_4x4 4 Pred_LO 4 4

11 B_L1 4x4 4 Pred_L1 4 4

12 B_Bi_4x4 4 BiPred 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-18:

— B_Skip and B_Direct_16x16: no motion vector differences or reference indices are present for the sub-macroblock
in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for
motion vectors and reference frame indices in clause 8.4.1 for direct mode prediction.

— B_Direct_8x8: no motion vector differences or reference indices are present for the sub-macroblock in the bitstream.
The functions SubMbPartWidth(B_Direct_8x8) and SubMbPartHeight(B_Direct_8x8) are used in the derivation
process for motion vectors and reference frame indices in clause 8.4.1 for direct mode prediction.

— B_X_MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-macroblock
are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-macroblock are predicted
using four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively. All sub-
macroblock partitions share the same reference index. For an MxN sub-macroblock partition in a sub-macroblock
with sub_mb_type[mbPartldx] being B_X_MxN with X being replaced by either LO or L1, one motion vector
difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock with
sub_mb_type[mbPartldx] being B_Bi_MxN, two motion vector difference are present in the bitstream.

108 Rec. ITU-T H.264 (08/2021)

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction modes)
specified by SubMbPredMode() in Table 7-18:

— Direct: see semantics for Table 7-14.

— Pred_LO: see semantics for Table 7-13.

— Pred_L1: see semantics for Table 7-14.

— BiPred: see semantics for Table 7-14.

ref_idx_IO[mbPartldx] has the same semantics as ref _idx_l0 in clause 7.4.5.1.
ref_idx_I1[mbPartldx] has the same semantics as ref_idx_I1 in clause 7.4.5.1.

mvd_I0[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd_I0 in clause 7.4.5.1, except that it is
applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify to
which macroblock partition and sub-macroblock partition mvd_I0 is assigned.

mvd_I1[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd_I1 in clause 7.4.5.1, except that it is
applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify to
which macroblock partition and sub-macroblock partition mvd_I1 is assigned.

7.45.3 Residual data semantics
The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows:

— If entropy_coding_mode_flag is equal to O, residual_block is set equal to residual_block_cavlc, which is used for
parsing the syntax elements for transform coefficient levels.

— Otherwise (entropy_coding_mode_flag is equal to 1), residual_block is set equal to residual_block_cabac, which is
used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, leveldx4, level8x8, startldx, endldx) is used with
the first four variables in brackets being its output and being assigned as follows.

Intral6x16DCLevel is set equal to i16x16DClevel, Intral6x16ACLevel is set equal to i16x16AClevel, Lumalevel4x4 is
set equal to level4x4, and Lumalevel8x8 is set equal to level8x8.

When ChromaArrayType is equal to 1 or 2, the following applies:

— For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8 4x4
chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

— For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3 and i8x8 = 0..NumC8x8 — 1, of each chroma component,
indexed by iCbCr=0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th list of the
iCbCr-th chroma component ChromaACLevel[iCbCr][i8x8*4 + i4x4].

When ChromaArrayType is equal to 3, the following applies:

— The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level4dx4, level8x8, startldx, endldx) is used
for the Cb component with the first four variables in brackets being its output and being assigned as follows.
Cbintral6x16DCLevel is set equal to i16x16DClevel, Chintral6x16ACLevel is set equal to i16x16AClevel,
CbLevel4x4 is set equal to level4x4, and CbLevel8x8 is set equal to level8x8.

— The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8, startldx, endldx) is used
for the Cr component with the first four variables in brackets being its output and being assigned as follows.
Crintral6x16DCLevel is set equal to i16x16DClevel, Crintral6x16ACLevel is set equal to i16x16AClevel,
CrLevel4dx4 is set equal to level4x4, and CrLevel8x8 is set equal to level8x8.

7.4.5.3.1 Residual luma data semantics
Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level4x4, and level8x8.

Depending on mb_type, the syntax structure residual_block(coeffLevel, startldx, endldx, maxNumCoeff) is used with
the arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual_block(), startldx, endldx, and maxNumCoeff as follows.

Depending on MbPartPredMode(mb_type, 0), the following applies:

— If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the list
i16x16DClevel and into the 16 lists i16x16AClevel[i]. i16x16DClevel contains the 16 transform coefficient levels

Rec. ITU-T H.264 (08/2021) 109

of the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma blocks indexed by
i =0..15, the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list i16x16AClevel[i].

— Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies:

— If transform_size_8x8 flag is equal to O, for each of the 16 4x4 luma blocks indexed by i=0..15, the 16
transform coefficient levels of the i-th block are parsed into the i-th list level4x4[i].

— Otherwise (transform_size_8x8_flag is equal to 1), for each of the 4 8x8 luma blocks indexed by i8x8 = 0..3, the
following applies:

— If entropy_coding_mode_flag is equal to O, first for each of the 4 4x4 luma blocks indexed by i4x4 = 0..3,
the 16 transform coefficient levels of the i4x4-th block are parsed into the (i8x8 * 4 + i4x4)-th list
level4x4[i8x8 * 4 + i4x4]. Then, the 64 transform coefficient levels of the i8x8-th 8x8 luma block which
are indexed by 4 * i + i4x4, where i = 0..15 and i4x4 = 0..3, are derived as level8x8[i8x8 J[4 * i + i4x4]| =
level4x4[i8x8 * 4 + i4x4][i].

NOTE — The 4x4 luma blocks with luma4x4BIkldx = i8x8 * 4 + i4x4 containing every fourth transform coefficient
level of the corresponding i8x8-th 8x8 luma block with offset i4x4 are assumed to represent spatial locations given by
the inverse 4x4 luma block scanning process in clause 6.4.3.

— Otherwise (entropy_coding_mode_flag is equal to 1), the 64 transform coefficient levels of the i8x8-th
block are parsed into the i8x8-th list level8x8[i8x8].

7.4.5.3.2 Residual block CAVLC semantics

The function TotalCoeff(coeff_token) that is used in clause 7.3.5.3.2 returns the number of non-zero transform coefficient
levels derived from coeff_token.

The function TrailingOnes(coeff_token) that is used in clause 7.3.5.3.2 returns the trailing ones derived from coeff_token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff_token is specified in clause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows:
— Iftrailing_ones_sign_flag is equal to 0, the corresponding transform coefficient level is decoded as +1.
— Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as —1.

level_prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level_prefix and
level_suffix is specified in clause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total_zeros is specified
in clause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a non-zero
valued transform coefficient level. The range of run_before is specified in clause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

7.4.5.3.3 Residual block CABAC semantics
coded_block_flag specifies whether the transform block contains non-zero transform coefficient levels as follows:
— Ifcoded block flag is equal to 0, the transform block contains no non-zero transform coefficient levels.

— Otherwise (coded_block_flag is equal to 1), the transform block contains at least one non-zero transform coefficient
level.

When coded_block_flag is not present, it shall be inferred to be equal to 1.
significant_coeff_flag[i] specifies whether the transform coefficient level at scanning position i is non-zero as follows:
— If significant_coeff_flag[i] is equal to 0, the transform coefficient level at scanning position i is set equal to 0;

— Otherwise (significant_coeff flag[i] is equal to 1), the transform coefficient level at scanning position i has a
non-zero value.

110 Rec. ITU-T H.264 (08/2021)

last_significant_coeff_flag[i] specifies for the scanning position i whether there are non-zero transform coefficient levels
for subsequent scanning positions i + 1 to maxNumCoeff — 1 as follows:

If last_significant_coeff_flag[i] is equal to 1, all following transform coefficient levels (in scanning order) of the
block have value equal to 0.

Otherwise (last_significant_coeff flag[i] is equal to 0), there are further non-zero transform coefficient levels along
the scanning path.

coeff_abs_level minusl[i] is the absolute value of a transform coefficient level minus 1. The value of
coeff_abs_level_minusl is constrained by the limits in clause 8.5.

coeff_sign_flag[i] specifies the sign of a transform coefficient level as follows:

If coeff_sign_flag is equal to 0, the corresponding transform coefficient level has a positive value.

Otherwise (coeff_sign_flag is equal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8

Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows:

If chroma_format_idc is equal to 0, the current picture consists of 1 sample array S.

Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays Sy, Scp, Scr.

This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding process
that produces identical results to the process described here conforms to the decoding process requirements of this
Recommendation | International Standard.

Each picture referred to in this clause is a complete primary coded picture or part of a primary coded picture. Each slice
referred to in this clause is a slice of a primary coded picture. Each slice data partition referred to in this clause is a slice
data partition of a primary coded picture.

Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows:

If separate_colour_plane_flag is equal to O, the decoding process is invoked a single time with the current picture
being the output.

Otherwise (separate_colour_plane_flag is equal to 1), the decoding process is invoked three times. Inputs to the
decoding process are all NAL units of the primary coded picture with identical value of colour_plane_id. The decoding
process of NAL units with a particular value of colour_plane_id is specified as if only a coded video sequence with
monochrome colour format with that particular value of colour_plane_id would be present in the bitstream. The output
of each of the three decoding processes is assigned to the 3 sample arrays of the current picture with the NAL units
with colour_plane_id equal to 0 being assigned to S, the NAL units with colour_plane_id equal to 1 being assigned
to Scp, and the NAL units with colour_plane_id equal to 2 being assigned to Sc.

NOTE - The variable ChromaArrayType is derived as 0 when separate_colour_plane_flag is equal to 1 and

chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations

identical to that of monochrome pictures with chroma_format_idc being equal to 0.

An overview of the decoding process is given as follows:

1. The decoding of NAL units is specified in clause 8.1.
2. The processes in clause 8.2 specify decoding processes using syntax elements in the slice layer and above:

— Variables and functions relating to picture order count are derived in clause 8.2.1. (only needed to be
invoked for one slice of a picture)

— Variables and functions relating to the macroblock to slice group map are derived in clause 8.2.2. (only
needed to be invoked for one slice of a picture)

The method of combining the various slice data partitions when slice data partitioning is used is described
in clause 8.2.3.

Rec. ITU-T H.264 (08/2021) 111

— When the frame_num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame_num is performed
according to clause 8.2.5.2 prior to the decoding of any slices of the current picture.

— At the beginning of the decoding process for each P, SP, or B slice, the decoding process for reference
picture lists construction specified in clause 8.2.4 is invoked for derivation of reference picture list O
(RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicListl).

— When the current picture is a reference picture and after all slices of the current picture have been decoded,
the decoded reference picture marking process in clause 8.2.5 specifies how the current picture is used in
the decoding process of inter prediction in later decoded pictures.

3. The processes in clauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

— The intra prediction process for |1 and SI macroblocks, except for I_PCM macroblocks as specified in
clause 8.3, has intra prediction samples as its output. For |_PCM macroblocks clause 8.3 directly specifies
a picture construction process. The output are constructed samples prior to the deblocking filter process.

— The inter prediction process for P and B macroblocks is specified in clause 8.4 with inter prediction samples
being the output.

— The transform coefficient decoding process and picture construction process prior to deblocking filter
process are specified in clause 8.5. That process derives samples for | and B macroblocks and for P
macroblocks in P slices. The output are constructed samples prior to the deblocking filter process.

— The decoding process for P macroblocks in SP slices or SI macroblocks is specified in clause 8.6. That
process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are constructed
samples prior to the deblocking filter process.

— The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in clause 8.7 with the output being the
decoded samples.

8.1 NAL unit decoding process
Inputs to this process are NAL units.
Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Clause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Clause 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type
equal to 1, 2, and 5.

Clause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type
equal to 1 and 2.

Clause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type
equal to 1 and 3 to 5.

Clause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type
equal to 1 and 3 to 5.

Clause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with nal_unit_type
equal to 1 to 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of other
NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each sequence.

No normative decoding process is specified for NAL units with nal_unit_type equal to 6, 9, 10, 11, and 12.

112 Rec. ITU-T H.264 (08/2021)

8.2 Slice decoding process

8.2.1 Decoding process for picture order count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
clauses 8.2.4.2.3 and 8.2.4.2.4), to determine co-located pictures (see clause 8.4.1.2.1) for deriving motion parameters in
temporal or spatial direct mode, to represent picture order differences between frames or fields for motion vector derivation
in temporal direct mode (see clause 8.4.1.2.3), for implicit mode weighted prediction in B slices (see clause 8.4.2.3.2), and
for decoder conformance checking (see clause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

— Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its top field and bottom field, respectively.

— Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

— Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control_operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in clauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory_management_control_operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set equal
to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equal to
TopFieldOrderCnt — tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt — tempPicOrderCnt.
NOTE 1 —When the decoding process for a picture currPic that includes a memory_management_control_operation equal to 5 refers
to the values of TopFieldOrderCnt (if applicable) or BottomFieldOrderCnt (if applicable) for the picture currPic (including
references to the function PicOrderCnt() with the picture currPic as the argument and references to the function DiffPicOrderCnt()
with one of the arguments being currPic), the values of TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable)
that are derived as specified in clauses 8.2.1.1, 8.2.1.2, and 8.2.1.3 for the picture currPic are used. When the decoding process for
a picture refers to the values TopFieldOrderCnt (if applicable) or BottomFieldOrderCnt (if applicable) of the previous picture
prevMmco5Pic in decoding order that includes a memory_management_control_operation equal to 5 (including references via the
functions PicOrderCnt() or DiffPicOrderCnt()), the values of TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if
applicable) that are used for the picture prevMmco5Pic are the values after the modification specified in the paragraph above
(resulting in TopFieldOrderCnt and/or BottomFieldOrderCnt equal to 0).

The bitstream shall not contain data that result in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to O for a
coded IDR frame, TopFieldOrderCnt not equal to 0 for a coded IDR top field, or BottomFieldOrderCnt not equal to O for
a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to O for the
fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies:

1) Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of pictures including all of the following:
a. The first picture in the list is the previous picture of any of the following types:
— an IDR picture,
— apicture containing a memory_management_control_operation equal to 5.
b. The following additional pictures:

— If pic_order_cnt_type is equal to 0, all other pictures that follow in decoding order after the first picture
in the list and are not "non-existing™ frames inferred by the decoding process for gaps in frame_num
specified in clause 8.2.5.2 and either precede the current picture in decoding order or are the current
picture. When pic_order_cnt_type is equal to 0 and the current picture is not a "non-existing" frame
inferred by the decoding process for gaps in frame_num specified in clause 8.2.5.2, the current picture
is included in listD prior to the invoking of the decoded reference picture marking process.

— Otherwise (pic_order_cnt_type is not equal to 0), all other pictures that follow in decoding order after
the first picture in the list and either precede the current picture in decoding order or are the current

Rec. ITU-T H.264 (08/2021) 113

picture. When pic_order_cnt_type is not equal to 0, the current picture is included in listD prior to the
invoking of the decoded reference picture marking process.

2) Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not
contain any of the following:

— apair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are not
at consecutive positions in listO,

— aTopFieldOrderCnt that has a value equal to another TopFieldOrderCnt,
— a BottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt,

— aBottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt and
TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that result in values of TopFieldOrderCnt, BottomFieldOrderCnt, PicOrderCntMsb,
or FrameNumOffset used in the decoding process as specified in clauses 8.2.1.1 to 8.2.1.3 that exceed the range of values
from —2%1 to 23! — 1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX is a frame or a complementary field pair)
PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field

pair picX
else if(picX is a top field)
PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1)

else if(picX is a bottom field)
PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) — PicOrderCnt(picB) (8-2)

The bitstream shall not contain data that result in values of DiffPicOrderCnt(picA, picB) used in the decoding process
that exceed the range of —21° to 25 — 1, inclusive.

NOTE 2 — Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in the
same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are negative.

NOTE 3 — Many encoders assign TopFieldOrderCnt and BottomFieldOrderCnt proportional to the sampling time of the
corresponding field (which is either a coded field or a field of a coded frame) relative to the sampling time of the first output field
of the previous IDR picture or the previous reference picture (in decoding order) that includes a
memory_management_control_operation equal to 5.

When the current picture includes a memory_management_control_operation equal to 5, PicOrderCnt(CurrPic) shall be
greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding process for picture order count type 0

This process is invoked when pic_order_cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this clause.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows:

— If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

— Otherwise (the current picture is not an IDR picture), the following applies:

— If the previous reference picture in decoding order included a memory_management_control_operation equal
to 5, the following applies:

— If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal
to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference
picture in decoding order.

— Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is set
equal to 0 and prevPicOrderCntLsb is set equal to O.

114 Rec. ITU-T H.264 (08/2021)

— Otherwise (the previous reference picture in decoding order did not include a
memory_management_control_operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of
the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of
pic_order_cnt_Isb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as specified by the following pseudo-code:

if((pic_order_cnt_Isb < prevPicOrderCntLsb) &&

((prevPicOrderCntLsb — pic_order_cnt_Isb) >= (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsh + MaxPicOrderCntLsh (8-3)
else if((pic_order_cnt_Isb > prevPicOrderCntLsb) &&

((pic_order_cnt_Isb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsh — MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as
TopFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_Isb (8-4)

When the current picture is not a top field, BottomFieldOrderCnt is derived as specified by the following pseudo-code:

if(Ifield_pic_flag)
BottomFieldOrderCnt = TopFieldOrderCnt + delta_pic_order_cnt_bottom
else (8-5)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_Isb
8.2.1.2 Decoding process for picture order count type 1
This process is invoked when pic_order_cnt_type is equal to 1.
Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this clause.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this clause. Let prevFrameNum be
equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

— If the previous picture in decoding order included a memory _management control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE — When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame_num specified in clause 8.2.5.2.

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag == 1)
FrameNumOffset = 0

else if(prevFrameNum > frame_num) (8-6)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable absFrameNum is derived as specified by the following pseudo-code:

if(num_ref frames_in_pic_order_cnt_cycle !'= 0)
absFrameNum = FrameNumOffset + frame_num

else (8-7)
absFrameNum =0

if(nal_ref_idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

Rec. ITU-T H.264 (08/2021) 115

When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as

picOrderCntCycleCnt = (absFrameNum — 1) / num_ref frames_in_pic_order_cnt_cycle
frameNumInPicOrderCntCycle = (absFrameNum — 1) % num_ref_frames_in_pic_order_cnt_cycle (8-8)

The variable expectedPicOrderCnt is derived as specified by the following pseudo-code:

if(absFrameNum >0) {
expectedPicOrderCnt = picOrderCntCycleCnt * ExpectedDeltaPerPicOrderCntCycle
for(i=0; i <= frameNumInPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset_for_ref frame[i]

} else
expectedPicOrderCnt =0
if(nal_ref idc == 0) (8-9)

expectedPicOrderCnt = expectedPicOrderCnt + offset_for_non_ref pic

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as specified by the following pseudo-code:

if(Ifield_pic_flag) {

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[0]

BottomFieldOrderCnt = TopFieldOrderCnt +

offset_for_top_to_bottom_field + delta_pic_order_cnt[1] (8-10)

} else if(!bottom_field_flag)

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[0]
else

BottomFieldOrderCnt = expectedPicOrderCnt + offset_for_top _to_bottom_field + delta_pic_order_cnt[0]

8.2.1.3 Decoding process for picture order count type 2

This process is invoked when pic_order_cnt_type is equal to 2.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

Let prevFrameNum be equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

— If the previous picture in decoding order included a memory_management_control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE 1 — When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame_num specified in clause 8.2.5.2.

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag == 1)
FrameNumOffset = 0

else if(prevFrameNum > frame_num) (8-11)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as specified by the following pseudo-code:

if(IdrPicFlag == 1)
tempPicOrderCnt =0

else if(nal_ref idc == 0) (8-12)
tempPicOrderCnt = 2 * (FrameNumOffset + frame_num) —1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame_num)

116 Rec. ITU-T H.264 (08/2021)

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as specified by the following pseudo-code:

if(!field_pic_flag) {

TopFieldOrderCnt = tempPicOrderCnt

BottomFieldOrderCnt = tempPicOrderCnt (8-13)
} else if(bottom_field_flag)

BottomFieldOrderCnt = tempPicOrderCnt
else

TopFieldOrderCnt = tempPicOrderCnt

NOTE 2 — Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures that
would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these pictures
having the same value of BottomFieldOrderCnt.

NOTE 3 — Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding process for macroblock to slice group map
Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.
Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked at the start of every slice.
NOTE — The output of this process is equal for all slices of a picture.

When num_slice_groups_minusl is equal to 1 and slice_group_map_type is equal to 3, 4, or 5, slice groups 0 and 1 have
a size and shape determined by slice_group_change_direction_flag as shown in Table 8-1 and specified in clauses 8.2.2.4
t0 8.2.2.6.

Table 8-1 — Refined slice group map type

slice_group_map_type slice_group_change_direction_flag | refined slice group map type
3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

In such a case, MapUnitsInSliceGroupO slice group map units in the specified growth order are allocated for slice group 0
and the remaining PicSizelInMapUnits — MapUnitsInSliceGroupO0 slice group map units of the picture are allocated for
slice group 1.

When num_slice_groups_minusl is equal tol and slice_group_map_type is equal to4 or 5, the variable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = (slice_group_change_direction_flag ?
(PicSizeInMapUnits — MapUnitsInSliceGroup0) : MapUnitsinSliceGroup0) (8-14)

The mapUnitToSliceGroupMap array is derived as follows:

— If num_slice_groups_minusl is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizelInMapUnits — 1, inclusive, as specified by

mapUnitToSliceGroupMap[i] =0 (8-15)

— Otherwise (num_slice_groups_minusl is not equal to 0), mapUnitToSliceGroupMap is derived as follows:

— If slice_group_map_type is equal to O, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.1 applies.

— Otherwise, if slice_group_map_type is equal to 1, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.2 applies.

— Otherwise, if slice_group_map_type is equal to 2, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.3 applies.

Rec. ITU-T H.264 (08/2021) 117

— Otherwise, if slice_group_map_type is equal to 3, the derivation of mapUnitToSliceGroupMap as specified in

clause 8.2.2.4 applies.

— Otherwise, if slice_group_map_type is equal to 4, the derivation of mapUnitToSliceGroupMap as specified in

clause 8.2.2.5 applies.

— Otherwise, if slice_group_map_type is equal to 5, the derivation of mapUnitToSliceGroupMap as specified in

clause 8.2.2.6 applies.

— Otherwise (slice_group_map_type is equal to 6), the derivation of mapUnitToSliceGroupMap as specified in

clause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in clause 8.2.2.8 is invoked to convert the map
unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap. After
derivation of the macroblock to slice group map as specified in clause 8.2.2.8, the function NextMbAddress(n) is defined

as the value of the variable nextMbAddress derived as specified by the following pseudo-code:

i=n+1
while(i <PicSizeInMbs && MbToSliceGroupMap[i] !'= MbToSliceGroupMap[n])
i++;
nextMbAddress = i
8.2.2.1 Specification for interleaved slice group map type
The specifications in this clause apply when slice_group_map_type is equal to 0.
The map unit to slice group map is generated as specified by the following pseudo-code:
i=0
do
for(iGroup = 0; iGroup <= num_slice_groups_minusl && i < PicSizelnMapUnits;
i +=run_length_minusl[iGroup++]+1)
for(j =0; j <= run_length_minusl[iGroup] && i+ j < PicSizeInMapUnits; j++)
mapUnitToSliceGroupMap[i + j] = iGroup
while(i < PicSizelnMapUnits)
8.2.2.2 Specification for dispersed slice group map type
The specifications in this clause apply when slice_group_map_type is equal to 1.

The map unit to slice group map is generated as specified by the following pseudo-code:

for(i = 0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((1 % PicWidthinMbs) +

(((i/PicWidthInMbs) * (num_slice_groups_minusl +1))/2))

% (num_slice_groups_minusl + 1)

8.2.2.3 Specification for foreground with left-over slice group map type
The specifications in this clause apply when slice_group_map_type is equal to 2.

The map unit to slice group map is generated as specified by the following pseudo-code:

for(i=0;i<PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = num_slice_groups_minusl
for(iGroup = num_slice_groups_minusl — 1; iGroup >= 0; iGroup— —) {
yTopLeft =top_left[iGroup] / PicwWidthInMbs
xTopLeft = top_left[iGroup] % PicWidthInMbs
yBottomRight = bottom_right[iGroup] / PicwWidthinMbs
xBottomRight = bottom_right[iGroup] % PicWidthInMbs
for(y = yTopLeft; y <= yBottomRight; y++)
for(x = XTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = iGroup
}

(8-16)

(8-17)

(8-18)

(8-19)

NOTE — The rectangles may overlap. Slice group 0 contains the macroblocks that are within the rectangle specified by top_left[0]
and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice_groups_minusl contains the
macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for any slice group

118 Rec. ITU-T H.264 (08/2021)

having a smaller slice group ID. The slice group with slice group ID equal to num_slice_groups_minus1 contains the macroblocks
that are not in the other slice groups.

8.2.2.4 Specification for box-out slice group map types
The specifications in this clause apply when slice_group_map_type is equal to 3.

The map unit to slice group map is generated as specified by

for(i=0; i< PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] =1
x = (PicWidthInMbs — slice_group_change_direction _flag)/ 2
y = (PicHeightInMapUnits — slice_group_change_direction_flag)/ 2
(leftBound, topBound) = (X, y)
(rightBound, bottomBound) = (X, y)
(xDir, yDir) = (slice_group_change_direction_flag — 1, slice_group_change_direction_flag)
for(k = 0; k < MapUnitsinSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs + x] == 1)
if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] =0 (8-20)
if(xDir == -1 && x == leftBound) {
leftBound = Max(leftBound — 1, 0)
x = leftBound
(xDir, yDir) = (0, 2 * slice_group_change_direction_flag — 1)
}elseif(xDir == 1 && x == rightBound) {
rightBound = Min(rightBound + 1, PicWidthinMbs — 1)
x = rightBound
(xDir, yDir) = (0, 1 -2 *slice_group_change_direction_flag)

}elseif(yDir == -1 && y == topBound) {
topBound = Max(topBound — 1, 0)
y = topBound

(xDir, yDir) = (1 -2 *slice_group_change_direction_flag, 0)
}elseif(yDir == 1 && y == bhottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightinMapUnits — 1)
y = bottomBound
(xDir, yDir) = (2 * slice_group_change_direction_flag — 1, 0)
} else
(X, y)=(x+xDir,y + yDir)
}

8.2.2.5 Specification for raster scan slice group map types
The specifications in this clause apply when slice_group_map_type is equal to 4.

The map unit to slice group map is generated as specified by

for(i=0;i<PicSizeInMapUnits; i++)
if(i < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap[i] = slice_group_change_direction_flag
else (8-21)
mapUnitToSliceGroupMap[i] =1 —slice_group_change_direction_flag

8.2.2.6 Specification for wipe slice group map types
The specifications in this clause apply when slice_group_map_type is equal to 5.

The map unit to slice group map is generated as specified by

k=0;
for(j = 0; j < PicWidthInMbs; j++)
for(i=0; i< PicHeightiInMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap[i * PicWidthinMbs + j] = slice_group_change_direction_flag
else (8-22)
mapUnitToSliceGroupMap[i * PicWidthinMbs + j] =1 — slice_group_change_direction_flag

Rec. ITU-T H.264 (08/2021) 119

8.2.2.7 Specification for explicit slice group map type
The specifications in this clause apply when slice_group_map_type is equal to 6.

The map unit to slice group map is generated as specified by
mapUnitToSliceGroupMap[i] =slice_group_id[i] (8-23)

for all i ranging from 0 to PicSizelnMapUnits — 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from 0 to PicSizelnMbs — 1, inclusive, the macroblock to slice group map is specified as
follows:

— If frame_mbs_only flag is equal to 1 or field_pic_flag is equal to 1, the macroblock to slice group map is specified
by

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[i] (8-24)
— Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by
MbToSliceGroupMap][i] = mapUnitToSliceGroupMap[i/2] (8-25)

— Otherwise (frame_mbs_only_flag is equal to 0 and mb_adaptive_frame_field flag is equal to 0 and field pic_flag is
equal to 0), the macroblock to slice group map is specified by

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[(i/ (2 * PicWidthInMbs)) * PicWidthInMbs
+ (i % PicWidthinMbs)] (8-26)

8.2.3 Decoding process for slice data partitions

Inputs to this process are:
— aslice data partition A layer RBSP,

— when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the same
slice_id as in the slice data partition A layer RBSP,

— when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the same
slice_id as in the slice data partition A layer RBSP.
NOTE 1 — The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.

Output of this process is a coded slice.

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3, and
4 (see category column in clause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained in
separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2. Partition B,
when present, contains a slice data partition B header and all syntax elements of category 3. Partition C, when present,
contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP by
extracting each syntax element from the slice data partition in which the syntax element appears depending on the slice
data partition assignment in the syntax tables in clause 7.3.
NOTE 2 — Syntax elements of category 3 are relevant to the decoding of residual data of 1 and SI macroblock types. Syntax elements
of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all other syntax
elements related to the decoding of macroblocks, and their information is often denoted as header information. The slice data
partition A header contains all the syntax elements of the slice header, and additionally a slice_id that are used to associate the slice
data partitions B and C with the slice data partition A. The slice data partition B and C headers contain the slice_id syntax element
that establishes their association with the slice data partition A of the slice.

120 Rec. ITU-T H.264 (08/2021)

8.2.4 Decoding process for reference picture lists construction
This process is invoked at the beginning of the decoding process for each P, SP, or B slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
by the bitstream and specified in clause 8.2.5. Short-term reference pictures are identified by the value of frame_num.
Long-term reference pictures are assigned a long-term frame index as specified by the bitstream and specified in
clause 8.2.5.

Clause 8.2.4.1 is invoked to specify

— the assignment of variables FrameNum, FrameNumWorap, and PicNum to each of the short-term reference pictures,
and

— the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in clause 8.4.2.1. A reference index is an index
into a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0. When
decoding a B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicListO.

At the beginning of the decoding process for each slice, reference picture list RefPicList0, and for B slices RefPicList1,
are derived as specified by the following ordered steps:

1. Aninitial reference picture list RefPicListO and for B slices RefPicListl are derived as specified in clause 8.2.4.2.

2. When ref_pic_list modification_flag 10 is equal tol or, when decoding a B slice,
ref_pic_list_modification_flag_I1 is equal to 1, the initial reference picture list RefPicListO and, for B slices,
RefPicListl are modified as specified in clause 8.2.4.3.

NOTE — The modification process for reference picture lists specified in clause 8.2.4.3 allows the contents of
RefPicList0 and for B slices RefPicListl to be modified in a flexible fashion. In particular, it is possible for a picture
that is currently marked "used for reference" to be inserted into RefPicList0 and for B slices RefPicListl even when the
picture is not in the initial reference picture list derived as specified in clause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minusl + 1, and for B
slices the number of entries in the modified reference picture list RefPicListl is num_ref_idx_I1_active_minusl + 1. A
reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or RefPicList1.

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in clause 8.2.4, the
decoded reference picture marking process specified in clause 8.2.5, or the decoding process for gaps in frame_num
specified in clause 8.2.5.2 is invoked.

The variables FrameNum, FrameNumWorap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialization process for reference picture lists in clause 8.2.4.2, the modification process for reference picture lists in
clause 8.2.4.3, the decoded reference picture marking process in clause 8.2.5, and the decoding process for gaps in
frame_num in clause 8.2.5.2.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame_num that has been decoded in the slice header(s) of the corresponding
short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame_num)

FrameNumWrap = FrameNum — MaxFrameNum (8-27)
else

FrameNumWrap = FrameNum

where the value of frame_num used in Equation 8-27 is the frame_num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameldx (that was assigned to it as specified in
clause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The values of these variables depend on the value of field_pic_flag and bottom_field_flag
for the current picture and they are set as follows:

Rec. ITU-T H.264 (08/2021) 121

— Iffield_pic_flag is equal to O, the following ordered steps are specified:

1. For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWrap (8-28)

2. For each long-term reference frame or long-term complementary reference field pair:
LongTermPicNum = LongTermFrameldx (8-29)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in
clauses 8.2.4.2,8.2.4.3, and 8.2.5.

— Otherwise (field_pic_flag is equal to 1), the following ordered steps are specified:
1. For each short-term reference field the following applies:

— If the reference field has the same parity as the current field
PicNum = 2 * FrameNumWorap + 1 (8-30)
— Otherwise (the reference field has the opposite parity of the current field),

PicNum = 2 * FrameNumWrap (8-31)

2. For each long-term reference field the following applies:

— If the reference field has the same parity as the current field

LongTermPicNum =2 * LongTermFrameldx + 1 (8-32)

— Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFrameldx (8-33)

8.2.4.2 Initialization process for reference picture lists
This initialization process is invoked when decoding a P, SP, or B slice header.
RefPicList0 and RefPicListl have initial entries as specified in clauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in clauses 8.2.4.2.1 through
8.2.4.2.5 is greater than num_ref _idx_I0_active_minusl + 1 or num_ref_idx_I1_active_minusl + 1, respectively, the extra
entries past position num_ref idx_10_active_minusl or num_ref idx |1 active_minusl are discarded from the initial
reference picture list.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in clauses 8.2.4.2.1 through
8.2.4.25 is less than num_ref idx_I0_active_minusl +1 or num_ref idx_I1 active minusl + 1, respectively, the
remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialization process for the reference picture list for P and SP slices in frames
This initialization process is invoked when decoding a P or SP slice in a coded frame.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for reference” (i.e., as "used for short-term reference" or "used for long-term reference™) and is
not marked as "non-existing".

The reference picture list RefPicListO is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the frame
or complementary field pair with the highest LongTermPicNum value.

122 Rec. ITU-T H.264 (08/2021)

NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference” with PicNum equal to 300, 302,
and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3,
the initial index order is:

— RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,
— RefPicListO[1] is set equal to the short-term reference picture with PicNum = 302,
— RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,
— RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0,

— RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.2.2 Initialization process for the reference picture list for P and SP slices in fields
This initialization process is invoked when decoding a P or SP slice in a coded field.

When this process is invoked, there shall be at least one reference field (which can be a field of a reference frame) that is
currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference™) and is
not marked as "non-existing".

Each field included in the reference picture list RefPicList0 has a separate index in the reference picture list RefPicListO.

NOTE — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameListOShortTerm and refFrameListOLongTerm, are derived as follows. For
purposes of the formation of this list of frames, decoded reference frames, complementary reference field pairs, non-paired
reference fields and reference frames in which a single field is marked "used for short-term reference" or "used for long-
term reference" are all considered reference frames.

1. All frames having one or more fields marked "used for short-term reference" are included in the list of short-term
reference frames refFrameListOShortTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for short-term reference", the first field is
included in the list of short-term reference frames refFrameListOShortTerm. refFrameListOShortTerm is ordered
starting with the reference frame with the highest FrameNumWrap value and proceeding through in descending
order to the reference frame with the lowest FrameNumWrap value.

2. All frames having one or more fields marked "used for long-term reference" are included in the list of long-term
reference frames refFrameListOLongTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for long-term reference, the first field is
included in the list of long-term reference frames refFrameListOLongTerm. refFrameListOLongTerm is ordered
starting with the reference frame with the lowest LongTermFrameldx value and proceeding through in ascending
order to the reference frame with the highest LongTermFrameldx value.

The process specified in clause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm given as
input and the output is assigned to RefPicListO.

8.2.4.2.3 Initialization process for reference picture lists for B slices in frames
This initialization process is invoked when decoding a B slice in a coded frame.

For purposes of the formation of the reference picture lists RefPicList0 and RefPicList1 the term reference entry refers in
the following to decoded reference frames or complementary reference field pairs.

When this process is invoked, there shall be at least one reference entry that is currently marked as "used for reference"
(i.e., as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

For B slices, the order of short-term reference entries in the reference picture lists RefPicList0 and RefPicListl depends
on output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked as
"non-existing" as specified in clause 8.2.5.2 are not included in either RefPicListO or RefPicList1.

NOTE 1 — When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list modification to

ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case PicOrderCnt()
is not inferred for "non-existing” frames).

Rec. ITU-T H.264 (08/2021) 123

The reference picture list RefPicListO is ordered such that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference”. When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
less than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicListO in
descending order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when
present) are then appended to refPicListO in ascending order of PicOrderCnt(entryShortTerm).

2. The long-term reference entries are ordered starting with the long-term reference entry that has the lowest
LongTermPicNum value and proceeding through in ascending order to the long-term reference entry that has the
highest LongTermPicNum value.

The reference picture list RefPicListl is ordered so that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference”. When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
greater than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicListl in
ascending order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present)
are then appended to refPicListl in descending order of PicOrderCnt(entryShortTerm).

2. Long-term reference entries are ordered starting with the long-term reference frame or complementary reference
field pair that has the lowest LongTermPicNum value and proceeding through in ascending order to the long-term
reference entry that has the highest LongTermPicNum value.

3. When the reference picture list RefPicList1 has more than one entry and RefPicListl is identical to the reference
picture list RefPicList0, the first two entries RefPicList1[0] and RefPicListl[1] are switched.

NOTE 2 — A non-paired reference field is not used for inter prediction of frames (independent of the value of MbaffFrameFlag).

8.2.4.2.4 Initialization process for reference picture lists for B slices in fields
This initialization process is invoked when decoding a B slice in a coded field.

When this process is invoked, there shall be at least one reference field (which can be a field of a reference frame) that is
currently marked as "used for reference” (i.e., as "used for short-term reference" or "used for long-term reference™) and is
not marked as "non-existing".

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicListl depend on
output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked as
"non-existing" as specified in clause 8.2.5.2 are not included in either RefPicList0 or RefPicList1.
NOTE 1 - When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list modification to
ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case PicOrderCnt()
is not inferred for "non-existing" frames).

NOTE 2 — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameListOShortTerm, refFrameList1ShortTerm and refFrameListLongTerm,
are derived as follows. For purposes of the formation of these lists of frames the term reference entry refers in the following
to decoded reference frames, complementary reference field pairs, or non-paired reference fields. When
pic_order_cnt_type is equal to O, the term reference entry does not refer to frames that are marked as "non-existing" as
specified in clause 8.2.5.2.

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference”. When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
less than or equal to PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of
refFrameListOShortTerm in descending order of PicOrderCnt(entryShortTerm). All of the remaining values of
entryShortTerm (when present) are then appended to refFrameListOShortTerm in ascending order of
PicOrderCnt(entryShortTerm).

NOTE 3 — When the current field follows in decoding order a coded field fldPrev with which together it forms a
complementary reference field pair, fldPrev is included into the list refFrameListOShortTerm using
PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.

2. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference”. When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
greater than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of
refFrameList1ShortTerm in ascending order of PicOrderCnt(entryShortTerm). All of the remaining values of

124 Rec. ITU-T H.264 (08/2021)

entryShortTerm (when present) are then appended to refFrameListlShortTerm in descending order of
PicOrderCnt(entryShortTerm).
NOTE 4 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameListlShortTerm using
PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.

3. refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameldx value
and proceeding through in ascending order to the reference entry having highest LongTermFrameldx value.

NOTE 5 — When the current picture is the second field of a complementary field pair and the first field of the

complementary field pair is marked as "used for long-term reference", the first field is included into the list

refFrameListLongTerm. A reference entry in which only one field is marked as "used for long-term reference" is
included into the list refFrameListLongTerm.

The process specified in clause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListLongTerm given as
input and the output is assigned to RefPicListO.

The process specified in clause 8.2.4.2.5 is invoked with refFrameList1ShortTerm and refFrameListLongTerm given as
input and the output is assigned to RefPicList1.

When the reference picture list RefPicList1 has more than one entry and RefPicListl is identical to the reference picture
list RefPicListO, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialization process for reference picture lists in fields

Inputs of this process are the reference frame lists refFrameListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than
long-term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListLongTerm, it is
derived as specified by the following ordered steps:

1. Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked
as "used for short-term reference”, the missing field is ignored and instead the next available stored reference field
of the chosen parity from the ordered list of frames refFrameListXShortTerm is inserted into RefPicListX. When
there are no more short-term reference fields of the alternate parity in the ordered list of frames
refFrameListXShortTerm, the next not yet indexed fields of the available parity are inserted into RefPicListX in
the order in which they occur in the ordered list of frames refFrameListXShortTerm.

2. Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked
as "used for long-term reference™, the missing field is ignored and instead the next available stored reference field
of the chosen parity from the ordered list of frames refFrameListLongTerm is inserted into RefPicListX. When
there are no more long-term reference fields of the alternate parity in the ordered list of frames
refFrameListLongTerm, the next not yet indexed fields of the available parity are inserted into RefPicListX in the
order in which they occur in the ordered list of frames refFrameListLongTerm.

8.2.4.3 Maodification process for reference picture lists
When ref_pic_list_modification_flag_l0 is equal to 1, the following applies:
1. LetrefldxLO be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies:

— If modification_of pic_nums_idc is equal to 0 or equal to 1, the process specified in clause 8.2.4.3.1 is
invoked with refldxLO0 as input, and the output is assigned to refldxL0.

— Otherwise, if modification_of pic_nums_idc is equal to 2, the process specified in clause 8.2.4.3.2 is
invoked with refldxLO as input, and the output is assigned to refldxLO.

— Otherwise (modification_of pic_nums_idc is equal to 3), the modification process for reference picture list
RefPicListO is finished.

When the current slice is a B slice and ref_pic_list_modification_flag_I1 is equal to 1, the following applies:

1. LetrefldxL1 be an index into the reference picture list RefPicListl. It is initially set equal to 0.

Rec. ITU-T H.264 (08/2021) 125

2. The corresponding syntax elements modification_of pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies:

— If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in clause 8.2.4.3.1 is
invoked with refldxL1 as input, and the output is assigned to refldxL1.

— Otherwise, if modification_of pic_nums_idc is equal to 2, the process specified in clause 8.2.4.3.2 is
invoked with refldxL1 as input, and the output is assigned to refldxL1.

— Otherwise (modification_of pic_nums_idc is equal to 3), the modification process for reference picture list
RefPicListl is finished.

8.2.4.3.1 Modification process of reference picture lists for short-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).

Output of this process is an incremented index refldxLX.

The variable picNumLXNoWrap is derived as follows:

— If modification_of_pic_nums_idc is equal to 0,

if(picNumLXPred — (‘abs_diff_pic_num_minusl +1)<0)

picNumLXNoWrap = picNumLXPred — (abs_diff_pic_num_minusl + 1) + MaxPicNum (8-34)
else

picNumLXNoWrap = picNumLXPred — (abs_diff_pic_num_minusl + 1)

— Otherwise (modification_of_pic_nums_idc is equal to 1),

if(picNumLXPred + (abs_diff_pic_num_minusl + 1) >= MaxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minusl + 1) — MaxPicNum (8-35)
else

picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minusl + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this clause is
invoked the first time for a slice (that is, for the first occurrence of modification_of pic_nums_idc equal to 0 or 1 in the
ref_pic_list_modification() syntax), picNumLOPred and picNumL1Pred are initially set equal to CurrPicNum. After each
assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to picNumLXPred.

The variable picNumLX is derived as specified by the following pseudo-code:

if(picNumLXNoWrap > CurrPicNum)

picNumLX = picNumLXNoWrap — MaxPicNum (8-36)
else

picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference™ and shall
not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumLX into the index
position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of refldxLX.

for(cldx = num_ref_idx_IX active_minusl + 1; cldx > refldxLX; cldx——)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = short-term reference picture with PicNum equal to picNumLX
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref_idx_IX active_minusl + 1; cldx++) (8-37)
if(PicNumF(RefPicListX[cldx]) = picNumLX)
RefPicListX[nldx++] = RefPicListX][cldx]

where the function PicNumF(RefPicListX][cldx]) is derived as follows:

— Ifthe picture RefPicListX[cldx] is marked as "used for short-term reference", PicNumF(RefPicListX[cldx]) is the
PicNum of the picture RefPicListX] cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as "used for short-term reference"),
PicNumF(RefPicListX][cldx]) is equal to MaxPicNum.

NOTE 1 — A value of MaxPicNum can never be equal to picNumLX.

126 Rec. ITU-T H.264 (08/2021)

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_IX_active_minusl of
the list need to be retained.

8.2.4.3.2 Maodification process of reference picture lists for long-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).
Output of this process is an incremented index refldxLX.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the
index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx = num_ref_idx_IX active_minusl + 1; cldx > refldxLX; cldx——)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref_idx_IX_active_minusl + 1; cldx++) (8-38)
if(LongTermPicNumF(RefPicListX][cldx]) !=long_term_pic_num)
RefPicListX[nldx++] = RefPicListX][cldx]

where the function LongTermPicNumF(RefPicListX[cldx]) is derived as follows:

- If the picture RefPicListX[cldx] is marked as ‘“"used for long-term reference”,
LongTermPicNumF(RefPicListX[cldx]) is the LongTermPicNum of the picture RefPicListX[cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as “used for long-term reference"),
LongTermPicNumF(RefPicListX[cldx]) is equal to 2 * (MaxLongTermFrameldx + 1).

NOTE 1 — A value of 2 * (MaxLongTermFrameldx + 1) can never be equal to long_term_pic_num.

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_IX_active_minusl of
the list need to be retained.

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref_idc is not equal to 0.

NOTE 1 — The decoding process for gaps in frame_num that is specified in clause 8.2.5.2 may also be invoked when nal_ref_idc is
equal to 0, as specified in clause 8.

A decoded picture with nal_ref_idc not equal to O, referred to as a reference picture, is marked as "used for short-term
reference" or "used for long-term reference". For a decoded reference frame, both of its fields are marked the same as the
frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is marked
as "used for short-term reference" is identified by its FrameNum and, when it is a field, by its parity. A picture that is
marked as "used for long-term reference” is identified by its LongTermFrameldx and, when it is a field, by its parity.

Frames or complementary field pairs marked as "used for short-term reference" or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one of
its constituent fields is marked as "unused for reference". A field marked as "used for short-term reference" or as "used for
long-term reference” can be used as a reference for inter prediction when decoding a field until marked as "unused for
reference".
NOTE 2 — The marking status of a frame or complementary field pair can always be deduced from the marking status of its two
fields. If both fields of a frame or complementary field pair are marked as "used for reference”, the frame or complementary field

pair is also marked as "used for reference"; otherwise (one field or both fields of a frame or complementary field pair are marked as
"unused for reference"), the frame or complementary field pair is marked as "unused for reference".

A picture can be marked as "unused for reference” by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in clause 8.2.5.3 or by the adaptive memory control reference picture marking process, a
customised adaptive marking operation specified in clause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and FrameNumWrap
and its picture number PicNum, and a long-term reference picture is identified for use in the decoding process by its long-
term picture number LongTermPicNum. When the current picture is not an IDR picture, clause 8.2.4.1 is invoked to specify
the assignment of the variables FrameNum, FrameNumWrap, PicNum and LongTermPicNum.

Rec. ITU-T H.264 (08/2021) 127

8.2.5.1 Sequence of operations for decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps:
1. All slices of the current picture are decoded.
2. Depending on whether the current picture is an IDR picture, the following applies:
— If the current picture is an IDR picture, the following ordered steps are specified:
a. All reference pictures are marked as "unused for reference”
b. Depending on long_term_reference_flag, the following applies:

— If long_term_reference_flag is equal to O, the IDR picture is marked as "used for short-term
reference” and MaxLongTermFrameldx is set equal to "no long-term frame indices".

— Otherwise (long_term reference flag is equal to 1), the IDR picture is marked as "used for
long-term reference”, the LongTermFrameldx for the IDR picture is set equal to 0, and
MaxLongTermFrameldx is set equal to 0.

— Otherwise (the current picture is not an IDR picture), the following applies:
— If adaptive_ref_pic_marking_mode_flag is equal to 0, the process specified in clause 8.2.5.3 is invoked.

— Otherwise (adaptive_ref_pic_marking_mode_flag is equal to 1), the process specified in clause 8.2.5.4
is invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference” by
memory_management_control_operation equal to 6, it is marked as "used for short-term reference".

It is a requirement of bitstream conformance that, after marking the current decoded reference picture, the total number of
frames with at least one field marked as "used for reference", plus the number of complementary field pairs with at least
one field marked as "used for reference", plus the number of non-paired fields marked as "used for reference™ shall not be
greater than Max(max_num_ref_frames, 1).

8.2.5.2 Decoding process for gaps in frame_num

This process is invoked when frame_num is not equal to PrevRefFrameNum and is not equal to (PrevRefFrameNum + 1)
% MaxFrameNum.

NOTE 1 — Although this process is specified as a subclause within clause 8.2.5 (which defines a process that is invoked only when
nal_ref_idc is not equal to 0), this process may also be invoked when nal_ref_idc is equal to O (as specified in clause 8). The reasons
for the location of this clause within the structure of this Recommendation | International Standard are historical.

NOTE 2 — This process can only be invoked for a conforming bitstream when gaps_in_frame_num_value_allowed_flag is equal
to 1. When gaps_in_frame_num_value_allowed_flag is equal to 0 and frame_num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame_num pertaining to "non-existing" pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-24 except the value of frame_num for the current picture.

For each of the values of frame_num pertaining to "non-existing” pictures, in the order in which the values of
UnusedShortTermFrameNum are generated by Equation 7-24, the following ordered steps are specified:

1. The decoding process for picture numbers as specified in clause 8.2.4.1 is invoked.
2. The sliding window decoded reference picture marking process as specified in clause 8.2.5.3 is invoked.

3. The decoding process generates a frame and the generated frame is marked as "non-existing" and "used for short-
term reference”. The sample values of the generated frame may be set to any value.

The following constraints shall be obeyed:

a) The bitstream shall not contain data that result in the derivation of a co-located picture colPic that is marked as
"non-existing"” in any invocation of the derivation process for the co-located 4x4 sub-macroblock partitions
specified in clause 8.4.1.2.1.

b) The bitstream shall not contain data that result in the derivation of a reference picture that is marked as
"non-existing" in any invocation of the reference picture selection process specified in clause 8.4.2.1.

c) The bitstream shall not contain data that result in a variable picNumLX that is equal to the PicNum of a picture
marked as "non-existing" in any invocation of the modification process for reference picture lists for short-term
reference pictures specified in clause 8.2.4.3.1.

128 Rec. ITU-T H.264 (08/2021)

d) The bitstream shall not contain data that result in a variable picNumLX that is equal to the PicNum of a picture
marked as "non-existing” in any invocation of the assignment process of a LongTermFrameldx to a short-term
reference picture specified in clause 8.2.5.4.3.

NOTE 3 — The above constraints specify that frames that are marked as "non-existing" by the process specified in this clause must
not be referenced in the inter prediction process (clause 8.4, including the derivation process for co-located 4x4 sub-macroblock
partitions in clause 8.4.1.2.1), the modification commands for reference picture lists for short-term reference pictures
(clause 8.2.4.3.1), or the assignment process of a LongTermFrameldx to a short-term reference picture (clause 8.2.5.4.3).

When pic_order_cnt_type is not equal to 0, TopFieldOrderCnt and BottomFieldOrderCnt are derived for each of the "non-
existing" frames by invoking the decoding process for picture order count in clause 8.2.1. When invoking the process in
clause 8.2.1 for a particular "non-existing" frame, the current picture is considered to be a picture considered having
frame_num inferred to be equal to UnusedShortTermFrameNum, nal_ref idc inferred to be not equal to 0, nal_unit_type
inferred to be not equal to 5, IdrPicFlag inferred to be equal to 0, field pic_flag inferred to be equal to O,
adaptive_ref pic_marking_mode_flag inferred to be equal to 0, delta_pic_order_cnt[0] (if needed) inferred to be equal
to 0, and delta_pic_order_cnt[1] (if needed) inferred to be equal to 0.
NOTE 4 — The decoding process should infer an unintentional picture loss when any of these values of frame_num pertaining to
"non-existing" pictures is referred to in the inter prediction process (clause 8.4, including the derivation process for the co-located
4x4 sub-macroblock partitions in clause 8.4.1.2.1), is referred to in the modification commands for reference picture lists for short-
term reference pictures (clause 8.2.4.3.1), or is referred to in the assignment process of a LongTermFrameldx to a short-term
reference picture (clause 8.2.5.4.3). The decoding process should not infer an unintentional picture loss when a memory management
control operation not equal to 3 is applied to a frame marked as "non-existing".

8.2.5.3 Sliding window decoded reference picture marking process
This process is invoked when adaptive_ref pic_marking_mode_flag is equal to 0.
Depending on the properties of the current picture as specified below, the following applies:

— If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as "used for short-term reference", the current picture and the complementary
reference field pair are also marked as "used for short-term reference".

— Otherwise, the following applies:

1. Let numShortTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as "used for short-term reference". Let numLongTerm be
the total number of reference frames, complementary reference field pairs and non-paired reference fields for
which at least one field is marked as "used for long-term reference".

2. When numShortTerm + numLongTerm is equal to Max(max_num_ref frames, 1), the condition that
numShortTerm is greater than 0 shall be fulfilled, and the short-term reference frame, complementary reference
field pair or non-paired reference field that has the smallest value of FrameNumWrap is marked as "unused for
reference”. When it is a frame or a complementary field pair, both of its fields are also marked as "unused for
reference”.

8.2.5.4 Adaptive memory control decoded reference picture marking process
This process is invoked when adaptive_ref pic_marking_mode_flag is equal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in the
bitstream after the current picture has been decoded. For each of these memory management_control _operation
commands, one of the processes specified in clauses 8.2.5.4.1 t08.2.5.4.6 is invoked depending on the value of
memory_management_control_operation. The memory_management_control_operation command with value of 0
specifies the end of memory_management_control_operation commands.

Memory management control operations are applied to pictures as follows:

— I field_pic_flag is equal to 0, memory_management_control_operation commands are applied to the frames or
complementary reference field pairs specified.

— Otherwise (field_pic_flag is equal to 1), memory_management_control_operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term reference picture as ""unused for reference™
This process is invoked when memory_management_control_operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum — (difference_of_pic_nums_minusl + 1). (8-39)

Rec. ITU-T H.264 (08/2021) 129

Depending on field_pic_flag the value of picNumX is used to mark a short-term reference picture as "unused for reference"
as follows:

— I field_pic_flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as "unused for reference".

— Otherwise (field_pic_flag is equal to 1), the short-term reference field specified by picNumX is marked as "unused
for reference”. When that reference field is part of a reference frame or a complementary reference field pair, the
frame or complementary field pair is also marked as "unused for reference”, but the marking of the other field in the
same reference frame or complementary reference field pair is not changed.

8.2.5.4.2 Marking process of a long-term reference picture as ""'unused for reference"
This process is invoked when memory_management_control_operation is equal to 2.

Depending on field_pic_flag the value of LongTermPicNum is used to mark a long-term reference picture as "unused for
reference” as follows:

— Iffield_pic_flag is equal to 0, the long-term reference frame or long-term complementary reference field pair having
LongTermPicNum equal to long_term_pic_num and both of its fields are marked as "unused for reference".

— Otherwise (field_pic_flag is equal to 1), the long-term reference field specified by LongTermPicNum equal to
long_term_pic_num is marked as "unused for reference". When that reference field is part of a reference frame or a
complementary reference field pair, the frame or complementary field pair is also marked as "unused for reference",
but the marking of the other field in the same reference frame or complementary reference field pair is not changed.

8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture
This process is invoked when memory_management_control_operation is equal to 3.

Given the syntax element difference_of pic_nums_minusl, the variable picNumX is obtained as specified in
clause 8.2.5.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field marked
as "used for short-term reference” and not marked as "non-existing".

When LongTermFrameldx equal to long_term_frame_idx is already assigned to a long-term reference frame or a long-term
complementary reference field pair, that frame or complementary field pair and both of its fields are marked as "unused
for reference”. When LongTermFrameldx is already assigned to a reference field, and that reference field is not part of a
complementary field pair that includes the picture specified by picNumX, that field is marked as "unused for reference".

Depending on field_pic_flag the value of LongTermFrameldx is used to mark a picture from "used for short-term
reference" to "used for long-term reference" as follows:

— If field_pic_flag is equal to 0, the marking of the short-term reference frame or short-term complementary reference
field pair specified by picNumX and both of its fields are changed from "used for short-term reference" to "used for
long-term reference” and assigned LongTermFrameldx equal to long_term_frame_idx.

— Otherwise (field_pic_flag is equal to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference” to "used for long-term reference™ and assigned LongTermFrameldx
equal to long_term_frame_idx. When the field is part of a reference frame or a complementary reference field pair,
and the other field of the same reference frame or complementary reference field pair is also marked as "used for
long-term reference"”, the reference frame or complementary reference field pair is also marked as "used for long-term
reference™ and assigned LongTermFrameldx equal to long_term_frame_idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameldx
This process is invoked when memory_management_control_operation is equal to 4.

All pictures for which LongTermFrameldx is greater than max_long_term_frame_idx_plusl — 1 and that are marked as
"used for long-term reference" are marked as "unused for reference".

The variable MaxLongTermFrameldx is derived as follows:

— If max_long_term_frame_idx_plusl is equal to 0, MaxLongTermFrameldx is set equal to "no long-term frame
indices".

— Otherwise (max_long_term_frame_idx_plusl is greater than 0), MaxLongTermFrameldx is set equal to
max_long_term_frame_idx_plusl — 1.

NOTE — The memory_management_control_operation command equal to 4 can be used to mark long-term reference pictures as
"unused for reference”. The frequency of transmitting max_long_term_frame_idx_plusl is not specified by this
Recommendation | International Standard. However, the encoder should send a memory_management_control_operation command
equal to 4 upon receiving an error message, such as an intra refresh request message.

130 Rec. ITU-T H.264 (08/2021)

8.2.5.4.5 Marking process of all reference pictures as ""'unused for reference™ and setting MaxLongTermFrameldx
to "'no long-term frame indices"

This process is invoked when memory_management_control_operation is equal to 5.

All reference pictures are marked as "unused for reference” and the variable MaxLongTermFrameldx is set equal to "no
long-term frame indices".

8.2.5.4.6 Process for assigning a long-term frame index to the current picture
This process is invoked when memory_management_control_operation is equal to 6.

When a variable LongTermFrameldx equal to long_term_frame_idx is already assigned to a long-term reference frame or
a long-term complementary reference field pair, that frame or complementary field pair and both of its fields are marked
as "unused for reference”. When LongTermFrameldx is already assigned to a reference field, and that reference field is
not part of a complementary field pair that includes the current picture, that field is marked as "unused for reference".

The current picture is marked as "used for long-term reference” and assigned LongTermFrameldx equal to
long_term_frame_idx.

When field_pic_flag is equal to O, both its fields are also marked as "used for long-term reference” and assigned
LongTermFrameldx equal to long_term_frame_idx.

When field_pic_flag is equal to 1 and the current picture is the second field (in decoding order) of a complementary
reference field pair, and the first field of the complementary reference field pair is also currently marked as “used for long-
term reference”, the complementary reference field pair is also marked as "used for long-term reference™ and assigned
LongTermFrameldx equal to long_term_frame_idx.

After marking the current decoded reference picture, the total number of frames with at least one field marked as "used for
reference”, plus the number of complementary field pairs with at least one field marked as "used for reference”, plus the
number of non-paired fields marked as "used for reference" shall not be greater than Max(max_num_ref_frames, 1).

NOTE - Under some circumstances, the above statement may impose a constraint on the order in which a
memory_management_control_operation syntax element equal to 6 can appear in the decoded reference picture marking syntax
relative to a memory_management_control_operation syntax element equal to 1, 2, 3, or 4.

8.3 Intra prediction process

This process is invoked for | and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra_NxN prediction modes
(where NxN is equal to 4x4 or 8x8), the values of IntraNxNPredMode from neighbouring macroblocks.

Outputs of this process are specified as follows:

— If the macroblock prediction mode is Intra_4x4 or Intra_8x8, the outputs are constructed luma samples prior to the
deblocking filter process and (when ChromaArrayType is not equal to 0) chroma prediction samples of the
macroblock predc, where C is equal to Cb and Cr.

— Otherwise, if mb_type is not equal to I|_PCM, the outputs are luma prediction samples of the macroblock pred, and
(when ChromaArrayType is not equal to 0) chroma prediction samples of the macroblock predc, where C is equal to
Cband Cr.

— Otherwise (mb_type is equal to I_PCM), the outputs are constructed luma and (when ChromaArrayType is not
equal to 0) chroma samples prior to the deblocking filter process.

The variable MvCnt is set equal to 0.
Depending on the value of mb_type the following applies:

— If mb_type is equal to I|_PCM, the sample construction process for I_PCM macroblocks as specified in clause 8.3.5
is invoked.

— Otherwise (mb_type is not equal to I_PCM), the following applies:
1. The decoding processes for Intra prediction modes are described for the luma component as follows:

— If the macroblock prediction mode is equal to Intra_4x4, the Intra_4x4 prediction process for luma
samples as specified in clause 8.3.1 is invoked.

— Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the Intra_8x8 prediction process as
specified in clause 8.3.2 is invoked.

Rec. ITU-T H.264 (08/2021) 131

— Otherwise (the macroblock prediction mode is equal to Intra_16x16), the Intra_16x16 prediction process
as specified in clause 8.3.3 is invoked with S’ as the input and the outputs are luma prediction samples
of the macroblock pred,.

2. When ChromaArrayType is not equal to 0, the Intra prediction process for chroma samples as specified in
clause 8.3.4 is invoked with S'cy, and S'cy as the inputs and the outputs are chroma prediction samples of the
macroblock predcp and predc:.

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

8.3.1 Intra_4x4 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are the values of Intradx4PredMode (if available) or IntraBx8PredMode (if available) from
neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned using
the 4x4 luma block inverse scanning process as specified in clause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4BIkldx = 0..15, the derivation process for
the Intra4x4PredMode as specified in clause 8.3.1.1 is invoked with luma4x4BIkldx as well as Intra4x4PredMode and
Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the variable
Intradx4PredMode[lumadx4BIkldx] as the output.

For each luma block of 4x4 samples indexed using luma4x4Blkldx = 0..15, the following ordered steps are specified:

1. The Intra_4x4 sample prediction process in clause 8.3.1.2 is invoked with luma4x4Blkldx and the array S'i
containing constructed luma samples prior to the deblocking filter process from adjacent luma blocks as the inputs
and the outputs are the Intra_4x4 luma prediction samples pred4x4[x, y] with x, y =0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the current macroblock
is derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4BIkldx as the input
and the output being assigned to (xO, yO).

3. The values of the prediction samples pred, [XO + x, yO +y] with X, y = 0..3 are derived by
pred [XO + X, yO +y] =preddxd. [X, y] (8-40)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
clause 8.5 is invoked with pred. and luma4x4Blkldx as the input and the constructed samples for the current 4x4
luma block S', as the output.

8.3.1.1 Derivation process for Intradx4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4Blkldx and variable arrays Intradx4PredMode (if
available) and IntraBx8PredMode (if available) that are previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BIkldx].

Table 8-2 specifies the values for Intradx4PredMode[luma4x4BIkldx] and the associated names.

Table 8-2 — Specification of Intradx4PredMode[luma4x4Blkldx] and associated names

Intradx4PredMode[luma4x4Blkldx] Name of Intradx4PredMode[luma4x4BIkldx]
0 Intra_4x4 Vertical (prediction mode)
1 Intra_4x4_Horizontal (prediction mode)
2 Intra_4x4 DC (prediction mode)
3 Intra_4x4 Diagonal_Down_Left (prediction mode)
4 Intra_4x4_Diagonal_Down_Right (prediction mode)
5 Intra_4x4_Vertical_Right (prediction mode)
6 Intra_4x4_Horizontal_Down (prediction mode)
7 Intra_4x4 Vertical_Left (prediction mode)
8 Intra_4x4_Horizontal_Up (prediction mode)

132 Rec. ITU-T H.264 (08/2021)

Intradx4PredMode[lumadx4BIkldx] labelled O, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in

Figure 8-1.

v
7 0 5 H.264(09) F8-1

Figure 8-1 — Intra_4x4 prediction mode directions (informative)

Intradx4PredMode[lumadx4BIkldx] is derived as specified by the following ordered steps:

1. The process specified in clause 6.4.11.4 is invoked with luma4x4BIkldx given as input and the output is assigned
to mbAddrA, luma4x4BIkldxA, mbAddrB, and luma4x4BIkldxB.

2. The variable dcPredModePredictedFlag is derived as follows:

— Ifany of the following conditions are true, dcPredModePredictedFlag is set equal to 1

the macroblock with address mbAddrA is not available
the macroblock with address mbAddrB is not available

the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1

the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1

— Otherwise, dcPredModePredictedFlag is set equal to 0.

3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows:

— If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in
Intra_4x4 or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_4x4 DC
prediction mode).

— Otherwise (dcPredModePredictedFlag is equal to 0 and the macroblock with address mbAddrN is coded in
Intra_4x4 or Intra_8x8 macroblock prediction mode), the following applies:

If the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode,
intraMxMPredModeN is set equal to Intra4x4PredMode[luma4x4BIkldxN], where
Intradx4PredMode is the variable array assigned to the macroblock mbAddrN.

Otherwise (the macroblock with address mbAddrN is coded in Intra_8x8 macroblock prediction
mode), intraMxMPredModeN is set equal to Intra8x8PredMode[luma4x4BIkldxN >> 2], where
Intra8x8PredMode is the variable array assigned to the macroblock mbAddrN.

4. Intradx4PredMode[lumadx4BIkldx] is derived by applying the following procedure:

predintra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intradx4 pred_mode_flag[luma4x4BIkldx])
Intradx4PredMode[luma4x4BIkldx] = predintradx4PredMode

else

(8-41)

if(rem_intradx4_pred_mode[luma4x4Blkldx] < predintra4x4PredMode)
Intradx4PredMode[lumadx4BIkldx] = rem_intradx4_pred_mode[luma4x4BIkldx]

else

Intrad4x4PredMode[luma4x4BIKkldx] = rem_intradx4_pred_mode[lumadx4Blkldx] + 1

Rec. ITU-T H.264 (08/2021) 133

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with macroblock prediction mode equal to Intra_4x4
followed by the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are:
— the index of a 4x4 luma block luma4x4Blkldx,

— an (PicWidthInSamples)x(PicHeightInSamples.) array ¢S, containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred4x4.[x, y], with x, y = 0..3, for the 4x4 luma block with index
lumadx4Blkldx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4Blkldx as the input and the
output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with x = -1,
y=-1.3and x=0..7, y = —1, are derived as specified by the following ordered steps:

1. The luma location (xN, yN) is specified by
XN =x0 + X (8-42)
YyN=yO +y (8-43)
2. The derivation process for neighbouring locations in clause 6.4.12 is invoked for luma locations with (XN, yN) as
input and mbAddrN and (xXW, yW) as output.
3. Eachsample p[x, y Jwithx =-1,y=-1..3and x =0..7, y = -1 is derived as follows:

— If any of the following conditions are true, the sample p[X, y] is marked as "not available for Intra_4x4
prediction™

— mbAddrN is not available,

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

— the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1 and
the current macroblock does not have mb_type equal to Sl,

— X s greater than 3 and luma4x4Blkldx is equal to 3 or 11.

— Otherwise, the sample p[X, y] is marked as "available for Intra_4x4 prediction™ and the value of the sample
p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,
P[X, y]=CSL[XM+ xXW, yM + 2 * yW] (8-44)
— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),
PL X, ¥ 1 =cSL[XM + xW, yM + yW] (8-45)

When samples p[x, —1], with x = 4..7, are marked as "not available for Intra_4x4 prediction," and the sample p[3, -1] is
marked as "available for Intra_4x4 prediction,"” the sample value of p[3, —1] is substituted for sample values p[x, —11],
with x = 4..7, and samples p[x, =1], with x = 4..7, are marked as "available for Intra_4x4 prediction".

NOTE — Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intradx4PredMode[luma4x4Blkldx], one of the Intra_4x4 prediction modes specified in clauses 8.3.1.2.1
t0 8.3.1.2.9 is invoked.

134 Rec. ITU-T H.264 (08/2021)

8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIlkldx] is equal to 0.
This mode shall be used only when the samples p[x, —1] with x = 0..3 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived by
preddxd. [x,y]1=p[x,—1], withx,y =0..3 (8-46)

8.3.1.2.2 Specification of Intra_4x4_Horizontal prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIkldx] is equal to 1.
This mode shall be used only when the samples p[—1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,[x, y], with X, y = 0..3, are derived by

preddxd [x,y]=p[-1, y], withx,y =0..3 (8-47)
8.3.1.2.3 Specification of Intra_4x4 DC prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIkldx] is equal to 2.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:

— Ifall samples p[x, =1], withx =0..3, and p[-1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction",
the values of the prediction samples pred4x4.[x, y], with x, y = 0..3, are derived by

preddx4 [x, y]=(p[0,-1]+p[1,-1]+p[2 -1]+p[3,-1]+
p[-1,0]+p[-1,1]+p[-1,2]+p[-1,3]+4)>>3 (8-48)

— Otherwise, if any samples p[x, =1], with x = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[-1,y], with y = 0..3, are marked as "available for Intra_4x4 prediction”, the values of the prediction
samples pred4x4,[x, y], with x, y = 0..3, are derived by

preddxd [x,y]1=(p[-1,0]+p[-1,1]+p[-1,2]+p[-1,3]+2)>>2 (8-49)

— Otherwise, if any samples p[-1,y], with y = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[x, =1], with x =0 .. 3, are marked as "available for Intra_4x4 prediction”, the values of the prediction
samples pred4x4.[X,y], with x, y =0 .. 3, are derived by

preddx4 [X, y1=(p[0,-1]+p[1,-1]+p[2, -1]+p[3,-1]+2)>>2 (8-50)

— Otherwise (some samples p[x, —1], with x = 0..3, and some samples p[-1, y], with y = 0..3, are marked as "not
available for Intra_4x4 prediction™), the values of the prediction samples pred4x4.[x, y], with x, y =0..3, are derived

by
preddx4 [x,y]=(1<<(BitDepthy—1)) (8-51)
NOTE — A 4x4 luma block can always be predicted using this mode.

8.3.1.2.4 Specification of Intra_4x4 Diagonal_Down_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIkldx] is equal to 3.

This mode shall be used only when the samples p[x, —1] with x = 0..7 are marked as "available for Intra_4x4 prediction™.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:

— Ifxisequal to 3andy isequal to 3,
preddx4 [x,y]=(p[6,-1]+3*p[7,-1]+2)>>2 (8-52)
— Otherwise (x is not equal to 3 or y is not equal to 3),

preddxd [X, y]=(p[x+y, -1]+2*p[x+y+1, -1]+p[x+y+2,-1]+2)>>2 (8-53)

Rec. ITU-T H.264 (08/2021) 135

8.3.1.2.5 Specification of Intra_4x4 Diagonal_Down_Right prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4Blkldx] is equal to 4.

This mode shall be used only when the samples p[x, =1 Jwithx =0..3and p[—1, y] withy =—1..3 are marked as "available
for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:
— Ifxis greater thany,

preddxd [x, y]1=(p[x—-y—-2,-1]+2*p[x—-y—-1,-1]+p[x-y,-1]+2)>>2 (8-54)
— Otherwise if x is less than y,

preddx4 [x,y]=(p[-1,y—x—2]+2*p[-L,y—x—-1]+p[-1y—x]+2)>>2 (8-55)
— Otherwise (x is equal to y),

preddx4. [x,y1=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-56)
8.3.1.2.6 Specification of Intra_4x4 Vertical_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIlkldx] is equal to 5.

This mode shall be used only when the samples p[x, =1 Jwithx =0..3and p[—1, y] withy =—1..3 are marked as "available
for Intra_4x4 prediction”.

Let the variable zZVR be set equal to 2 * x —y.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:
— IfzVRisequalto 0, 2, 4, or 6,
preddx4[x, y]=(p[x—(y>>1)-1,-1]+p[x—(y>>1) -1]+1)>>1 (8-57)
— Otherwise, if zVR isequal to 1, 3, or 5,
preddxd [x, y]=(p[Xx—(y>>1) -2, -1]+2*p[x —(y>>1) -1, -1]+p[x—(y>>1), -1]+2)>>2

(8-58)
— Otherwise, if zZVR is equal to —1,
preddx4. [x,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-59)
— Otherwise (zVR is equal to —2 or —3),
preddxd [x,y]1=(p[-1, y-1]+2*p[-1,y—-2]+p[-1,y—-3]+2)>>2 (8-60)

8.3.1.2.7 Specification of Intra_4x4 Horizontal _Down prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[lumadx4BIkldx] is equal to 6.

This mode shall be used only when the samples p[x, =1 Jwithx =0..3and p[—1, y] withy =—1..3 are marked as "available
for Intra_4x4 prediction”.

Let the variable zHD be set equal to 2 * y — x.
The values of the prediction samples pred4x4.[x, y], with x, y = 0..3, are derived as follows:

— IfzHDisequal to O, 2, 4, or 6,
preddx4[x, y1=(p[-1,y—(x>>1)-1]+p[-1y—-(x>>1)]+1)>>1 (8-61)
— Otherwise, if zHD is equal to 1, 3, or 5,

preddxd [x, y]=(p[-Ly—(x>>1)-2]+2*p[-Ly—(x>>1)-1]+p[-1y—(x>>1)]+2)>>2
(8-62)

— Otherwise, if zHD is equal to -1,

136 Rec. ITU-T H.264 (08/2021)

preddx4 [x,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-63)
— Otherwise (zHD is equal to —2 or —3),

preddx4 [X, y]=(p[x—1,-1]+2*p[x—2,-1]+p[x—3,-1]+2)>>2 (8-64)
8.3.1.2.8 Specification of Intra_4x4 Vertical_Left prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIkldx] is equal to 7.
This mode shall be used only when the samples p[x, —1] with x = 0..7 are marked as "available for Intra_4x4 prediction".
The values of the prediction samples pred4x4.[x, y], with x, y = 0..3, are derived as follows:
— Ifyisequal to0Oor 2,

preddxd [x, y]=(p[x+(y>>1), -1]+p[x+(y>>1)+1,-1]+1)>>1 (8-65)
— Otherwise (y is equal to 1 or 3),

preddxd [x, y]=(p[x+(y>>1),-1]+2*p[x+(y>>1)+1 -1]+p[x+(y>>1)+2-1]+2)>>2
(8-66)

8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction mode

This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BIkldx] is equal to 8.

This mode shall be used only when the samples p[—1, y] with y = 0..3 are marked as "available for Intra_4x4 prediction”.
Let the variable zZHU be set equal to x + 2 * y.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:

— IfzHUisequalto 0, 2, or 4

preddxd [x, y]=(p[-1 y+(x>>1)]+p[-1y+(x>>1)+1]+1)>>1 (8-67)
— Otherwise, if zHU isequal to 1 or 3

preddxd [x, y]=(p[-1, y+(x>>1)]+2*p[-1,y+(x>>1)+1]+p[-1y+(x>>1)+2]+2)>>2

(8-68)
— Otherwise, if zHU is equal to 5,
preddxd [x,y]=(p[-1,2]+3*p[-1,3]+2)>>2 (8-69)
— Otherwise (zHU is greater than 5),
preddx4 [x,y]=p[-1, 3] (8-70)

8.3.2 Intra_8x8 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_8x8.

Inputs to this process are the values of Intradx4PredMode (if available) or Intra8x8PredMode (if available) from the
neighbouring macroblocks or macroblock pairs.

Outputs of this process are 8x8 luma sample arrays as part of the 16x16 luma array of prediction samples of the macroblock
predy.

The luma component of a macroblock consists of 4 blocks of 8x8 luma samples. These blocks are inverse scanned using
the inverse 8x8 luma block scanning process as specified in clause 6.4.5.

For all 8x8 luma blocks of the luma component of a macroblock with luma8x8BIkldx = 0..3, the derivation process for
Intra8x8PredMode as specified in clause 8.3.2.1 is invoked with luma8x8Blkldx as well as Intra4x4PredMode and
Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the variable
Intra8x8PredMode[luma8x8BIkldx] as the output.

For each luma block of 8x8 samples indexed using luma8x8Blkldx = 0..3, the following ordered steps are specified:

Rec. ITU-T H.264 (08/2021) 137

The Intra_8x8 sample prediction process in clause 8.3.2.2 is invoked with luma8x8Blkldx and the array S'.
containing constructed samples prior to the deblocking filter process from adjacent luma blocks as the input and
the output are the Intra_8x8 luma prediction samples pred8x8.[x, y] with x, y =0..7.

The position of the upper-left sample of an 8x8 luma block with index luma8x8Blkldx inside the current
macroblock is derived by invoking the inverse 8x8 luma block scanning process in clause 6.4.5 with
luma8x8Blkldx as the input and the output being assigned to (xO, yO).

The values of the prediction samples pred, [xO + x, yO +y] with X, y = 0..7 are derived by
predi [XO + X, yO +y] = pred8x8.[X, y] (8-71)

The transform coefficient decoding process and picture construction process prior to deblocking filter process in
clause 8.5 is invoked with pred. and luma8x8BIkldx as the input and the constructed samples for the current 8x8
luma block S', as the output.

8.3.2.1 Derivation process for Intra8x8PredMode

Inputs to this process are the index of the 8x8 luma block luma8x8Blkldx and variable arrays Intradx4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra8x8PredMode[luma8x8BIkldx].

Table 8-3 specifies the values for Intra8x8PredMode[luma8x8BIkldx] and the associated mnemonic names.

Table 8-3 — Specification of Intra8x8PredMode[luma8x8Blkldx] and associated names

Intra8x8PredMode[luma8x8Blkldx] Name of Intra8x8PredMode[luma8x8BIkldx]
0 Intra_8x8 Vertical (prediction mode)
1 Intra_8x8 Horizontal (prediction mode)
2 Intra_8x8_DC (prediction mode)
3 Intra_8x8_Diagonal_Down_Left (prediction mode)
4 Intra_8x8 Diagonal_Down_Right (prediction mode)
5 Intra_8x8_Vertical_Right (prediction mode)
6 Intra_8x8 Horizontal_Down (prediction mode)
7 Intra_8x8 Vertical_Left (prediction mode)
8 Intra_8x8_Horizontal_Up (prediction mode)

Intra8x8PredMode[luma8x8BIkldx] is derived as specified by the following ordered steps:

1.

3.

138

The process specified in clause 6.4.11.2 is invoked with luma8x8BIkldx given as input and the output is assigned
to mbAddrA, luma8x8BlkldxA, mbAddrB, and luma8x8BIkldxB.

The variable dcPredModePredictedFlag is derived as follows:

— If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1:
— the macroblock with address mbAddrA is not available,
— the macroblock with address mbAddrB is not available,

— the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1,

— the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1.

— Otherwise, dcPredModePredictedFlag is set equal to 0.

For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows:

Rec. ITU-T H.264 (08/2021)

— If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra_4x4
or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_8x8 DC prediction
mode).

— Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra_8x8
macroblock prediction mode)), the following applies:

— If the macroblock with address mbAddrN is coded in Intra_8x8 macroblock prediction mode,
intraMxMPredModeN is set equal to Intra8x8PredMode[luma8x8BIkIdxN], where Intra8x8PredMode
is the variable array assigned to the macroblock mbAddrN.

— Otherwise (the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode),
intraMxMPredModeN is derived by the following procedure, where Intradx4PredMode is the variable
array assigned to the macroblock mbAddrN.

intraMxMPredModeN = Intra4x4PredMode[luma8x8BIkIdxN * 4 +n] (8-72)

where the variable n is derived as follows:

— If N is equal to A, depending on the variable MbaffFrameFlag, the variable luma8x8BIkldx, the
current macroblock, and the macroblock mbAddrN, the following applies:

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame coded macroblock, the
macroblock mbAddrN is a field coded macroblock, and luma8x8BIkldx is equal to 2, n is set
equal to 3.

— Otherwise (MbaffFrameFlag is equal to O or the current macroblock is a field coded
macroblock or the macroblock mbAddrN is a frame coded macroblock or luma8x8BIkldx is
not equal to 2), n is set equal to 1.

— Otherwise (N is equal to B), n is set equal to 2.

4. Finally, given intraMxMPredModeA and intraMxMPredModeB, the variable
Intra8x8PredMode[luma8x8BIkldx] is derived by applying the following procedure.

predintra8x8PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra8x8_pred_mode_flag[luma8x8BIkldx])
Intra8x8PredMode[luma8x8BIkldx] = predintra8x8PredMode
else (8-73)
if(rem_intra8x8_pred_mode[luma8x8BIkldx] < predintra8x8PredMode)
Intra8x8PredMode[luma8x8BIkldx] = rem_intra8x8_pred_mode[luma8x8BIkldx]
else
Intra8x8PredMode[luma8x8BIkldx] = rem_intra8x8_pred_mode[luma8x8BIkldx | + 1

8.3.2.2 Intra_8x8 sample prediction

This process is invoked for each 8x8 luma block of a macroblock with macroblock prediction mode equal to Intra_8x8
followed by the transform decoding process and picture construction process prior to deblocking for each 8x8 luma block.

Inputs to this process are:
— the index of an 8x8 luma block luma8x8BIkldx,

— an (PicWidthInSamples.)x(PicHeightInSamples.) array cSi containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred8x8.[x, y], with x, y =0..7, for the 8x8 luma block with index
luma8x8Blkldx.

The position of the upper-left sample of an 8x8 luma block with index luma8x8BIkldx inside the current macroblock is
derived by invoking the inverse 8x8 luma block scanning process in clause 6.4.5 with luma8x8Blkldx as the input and the
output being assigned to (xO, yO).

The 25 neighbouring samples p[X, y] that are constructed luma samples prior to the deblocking filter process, with x = -1,
y =-1.7 and x = 0..15, y = —1, are derived as specified by the following ordered steps:

1. The luma location (XN, yN) is specified by

XN = X0 + X (8-74)

Rec. ITU-T H.264 (08/2021) 139

yN=yO +y (8-75)
2. The derivation process for neighbouring locations in clause 6.4.12 is invoked for luma locations with (XN, yN) as
input and mbAddrN and (xXW, yW) as output.
3. Eachsample p[x, y Jwithx =—-1,y =-1..7 and x = 0..15, y = -1 is derived as follows:

— If any of the following conditions are true, the sample p[X, y] is marked as "not available for Intra_8x8
prediction™:

— mbAddrN is not available,

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1.

— Otherwise, the sample p[X, y] is marked as "available for Intra_8x8 prediction" and the sample value p[x, y]
is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (XM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,
P[X,y]1=CSL[XM + xW, yM + 2 * yW] (8-76)
— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),
p[X,y] =cSL[XM + xW, yM + yW] (8-77)

When samples p[x, —1], with x = 8..15, are marked as "not available for Intra_8x8 prediction," and the sample p[7, —1]
is marked as "available for Intra_8x8 prediction," the sample value of p[7, —1] is substituted for sample values p[x, =11,
with x = 8..15, and samples p[x, —1], with x = 8..15, are marked as "available for Intra_8x8 prediction™.

NOTE — Each block is assumed to be constructed into a picture array prior to decoding of the next block.

The reference sample filtering process for Intra_8x8 sample prediction in clause 8.3.2.2.1 is invoked with the samples
p[x,y] with x=-1, y=-1..7 and x=0..15, y = -1 (if available) as input and p’[X,y] with x=-1, y=-1..7 and
x =0..15, y = -1 as output.

Depending on Intra8x8PredMode[luma8x8Blkldx], one of the Intra_8x8 prediction modes specified in clauses 8.3.2.2.2
t0 8.3.2.2.10 is invoked.

8.3.2.2.1 Reference sample filtering process for Intra_8x8 sample prediction

Inputs to this process are the reference samples p[x, y] with x =-1, y =-1..7 and x = 0..15, y =1 (if available) for
Intra_8x8 sample prediction.

Outputs of this process are the filtered reference samples p'[X, y Jwithx = -1,y =-1..7 and x = 0..15, y = —1 for Intra_8x8
sample prediction.

When all samples p[x, —1] with x = 0..15 are marked as "available for Intra_8x8 prediction", the following applies:
1. The value of p'[0, —1] is derived as follows:

— Ifp[-1, —11] is marked as "available for Intra_8x8 prediction", p'[0, —1] is derived by
p[0,-1]1=(p[-1,-1]+2*p[0,-1]+p[1,-1]+2)>>2 (8-78)
— Otherwise (p[—1, —1] is marked as "not available for Intra_8x8 prediction™), p’[0, —1] is derived by
pT0,-1]1=(3*p[0,-1]+p[l,-1]+2)>>2 (8-79)
2. The values of p’[x, —11], with x = 1..14, are derived by
PIx, —1]=(plx—1,-1]+2*p[x, 1] +p[x+l, -1]+2)>>2 (8-80)

3. The value of p'[15, —1] is derived by

140 Rec. ITU-T H.264 (08/2021)

p[15 -11=(p[14, ~1]+3*p[15 -1]+2)>>2 (8-81)

When the sample p[—1, —1] is marked as "available for Intra_8x8 prediction", the value of p’[-1, —1] is derived as
follows:

— Ifthe sample p[0, —1] is marked as "not available for Intra_8x8 prediction™ or the sample p[—1, 0] is marked as "not
available for Intra_8x8 prediction”, the following applies:

— Ifthe sample p[0, —1] is marked as "available for Intra_8x8 prediction”, p'[-1, —1] is derived by
P[-1,-1]=(3*p[—1,—11+p[0,~1]+2)>>2 (8-82)

— Otherwise, if the sample p[0, —1] is marked as "not available for Intra_8x8 prediction" and the sample p[-1, 0]
is marked as "available for Intra_8x8 prediction”, p’[—1, —1] is derived by

pT-1,-1]1=(3*p[-1,-1]+p[-1,0]+2)>>2 (8-83)

— Otherwise (the sample p[0, —1] is marked as "not available for Intra_8x8 prediction™ and the sample p[-1, 0]
is marked as "not available for Intra_8x8 prediction"), p’[-1, =1] is set equal to p[-1, -1 1].

NOTE — When both samples p[0, =1 Jand p[—1, 0] are marked as "not available for Intra_8x8 prediction”, the derived
sample p'[=1, =1] is not used in the intra prediction process.

— Otherwise (the sample p[0, —1] is marked as "available for Intra_8x8 prediction" and the sample p[—1, 0] is marked
as "available for Intra_8x8 prediction™), p’[-1, —1] is derived by

P[-1,-1]=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-84)
When all samples p[-1, y] with y = 0..7 are marked as "available for Intra_8x8 prediction”, the following applies:

1. The value of p'[-1, 0] is derived as follows:

— Ifp[-1, —11] is marked as "available for Intra_8x8 prediction", p'[—1, 0] is derived by
PL-1,0]1=(p[-1,-1]1+2*p[-1,0]+p[-L1,1]+2)>>2 (8-85)
— Otherwise (p[—1, —1] is marked as "not available for Intra_8x8 prediction™), p'[=1, 0] is derived by
pPI[-1,0]=(3*p[-1,0]+p[-1,1]+2)>>2 (8-86)
2. Thevalues of p[-1, y], withy = 1..6, are derived by
pPI-Lyl=(pl-1y-1]+2*p[-1y]+p[-1y+1]+2)>>2 (8-87)
3. Thevalue of p’[-1, 7] is derived by
p[-1,7]1=(p[-1,6]+3*p[-1,7]+2)>>2 (8-88)
8.3.2.2.2 Specification of Intra_8x8 Vertical prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 0.

This mode shall be used only when the samples p[x, —1] with x = 0..7 are marked as "available for Intra_8x8 prediction".

The values of the prediction samples pred8x8.[X, y], with x, y = 0..7, are derived by

pred8x8.[x,y]1=p'[x,—1], withx,y=0..7 (8-89)
8.3.2.2.3 Specification of Intra_8x8_Horizontal prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 1.

This mode shall be used only when the samples p[—1, y], withy = 0..7, are marked as "available for Intra_8x8 prediction".

The values of the prediction samples pred8x8.[X, y], with x, y = 0..7, are derived by

pred8x8.[x,y]1=p'[-1,y] withx,y=0.7 (8-90)

Rec. ITU-T H.264 (08/2021) 141

8.3.2.2.4 Specification of Intra_8x8 DC prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 2.
The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:

— Ifall samples p[x, =1], withx =0..7,and p[-1, y], with y = 0..7, are marked as "available for Intra_8x8 prediction,"
the values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived by

pred8x8,_[X, y]= (27: 0'[x' 1]+ ip‘[—l, y']+8)>> 4 (8-91)

— Otherwise, if any samples p[x, —1], with x =0..7, are marked as "not available for Intra_8x8 prediction" and all
samples p[-1, y], with y =0..7, are marked as "available for Intra_8x8 prediction", the values of the prediction
samples pred8x8.[x, y], with x, y = 0..7, are derived by

pred8x8 [X,y]= (i p'[-1y']+4) >> 3 (8-92)

— Otherwise, if any samples p[—1, y], with y =0..7, are marked as "not available for Intra_8x8 prediction™ and all
samples p[x, —1], with x =0..7, are marked as "available for Intra_8x8 prediction", the values of the prediction
samples pred8x8.[X, y], with x, y = 0..7, are derived by

pred8x8, [Xx,y]= (27: p'[x',—1]+4)>>3 (8-93)

— Otherwise (some samples p[x, —1], with x = 0..7, and some samples p[-1,y], with y = 0..7, are marked as "not
available for Intra_8x8 prediction"), the values of the prediction samples pred8x8.[x, y], with X, y =0..7, are derived

by
pred8x8.[x, y] = (1 << (BitDepthy —1)) (8-94)
NOTE — An 8x8 luma block can always be predicted using this mode.

8.3.2.2.5 Specification of Intra_8x8 Diagonal Down_Left prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 3.
This mode shall be used only when the samples p[X, —1] with x = 0..15 are marked as "available for Intra_8x8 prediction".
The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:
— Ifxisequal to 7 andy is equal to 7,

pred8x8. [x,y]1=(p[14,-1]+3*p[15 -1]1+2)>>2 (8-95)
— Otherwise (x is not equal to 7 or y is not equal to 7),

pred8x8L[X, y]1=(p[x+y,-1]+2*p[x+y+1, -1]+p[x+y+2,-1]1+2)>>2 (8-96)
8.3.2.2.6 Specification of Intra_8x8 Diagonal_Down_Right prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 4.

This mode shall be used only when the samples p[x, —1] with x =0..7 and p[-1, y] with y=-1..7 are marked as
"available for Intra_8x8 prediction”.

The values of the prediction samples pred8x8.[X, y], with x, y = 0..7, are derived as follows:

— If xisgreater thany,

pred8X8L[X,y] =(p[x -y -2 -1 +2*p[x-y—-1, -1]+p[x—-y,-1]+2)>>2 (8-97)
— Otherwise if x is less than vy,

pred8Xx8[x, y]=(p[-1y-—x-2]+2*p[-1y-x-1]+p[-Ly—-x]+2)>>2 (8-98)

— Otherwise (x is equal to y),

142 Rec. ITU-T H.264 (08/2021)

pred8x8. [x,y]=(p[0,-1]1+2*p[-1,-1]+p[-1,0]+2)>>2 (8-99)

8.3.2.2.7 Specification of Intra_8x8_Vertical_Right prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 5.

This mode shall be used only when the samples p[x, —1] with x =0..7 and p[-1, y] with y =—1..7 are marked as
"available for Intra_8x8 prediction".

Let the variable zZVR be set equal to 2 * x —y.
The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:

- IfzVRisequalto 0, 2, 4, 6, 8, 10, 12, or 14
pred8x8 [X, y]=(p[x—(y>1)—-1,-1]+p[x—(y>1)-1]+1)>>1 (8-100)
— Otherwise, if zVR isequalto 1, 3,5, 7,9, 11, or 13

pred8x8.[X, y 1= (p[x—(y>>1)—-2, 1] +2*p[x—(y>1)—-1,-1]+
pPIx—(y>>1),-1]+2)>>2 (8-101)

— Otherwise, if zZVR is equal to —1,

pred8x8. [x,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-102)
— Otherwise (zVR is equal to -2, -3, —4, -5, —6, or —7),

pred8x8. [x,y]=(p[-1,y—2*x—-1]+2*p[-l,y—2*x—-2]+p[-l,y—-2*x—-3]+2)>>2 (8-103)
8.3.2.2.8 Specification of Intra_8x8 Horizontal Down prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 6.

This mode shall be used only when the samples p[x, —1] with x=0..7 and p[-1, y] with y=-1..7 are marked as
"available for Intra_8x8 prediction".

Let the variable zHD be set equal to 2 *y — x.
The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:

— IfzHDisequalto 0, 2, 4, 6, 8, 10, 12, or 14
pred8x8. [X, y]=(p[-L y—(x>1)-1]+p[-Ly—(x>>1)]+1)>>1 (8-104)
— Otherwise, if zHD isequal to 1, 3,5, 7,9, 11, or 13

pred8x8 [x,y]1=(p[-1y—(x>>1)-2]+2*p[-1,y—(x>>1)—-1]+
pPl-1y—(x>>1)]+2)>>2 (8-105)

— Otherwise, if zHD is equal to -1,

pred8x8. [x,y]1=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-106)
— Otherwise (zHD is equal to —2, —3, -4, -5, —6, —7),

pred8x8. [X,y] = (p[x—2*y -1, -1]+2*p[x—2*y—2,-1]+p[x—2*y-3,-1]+2)>>2 (8-107)
8.3.2.2.9 Specification of Intra_8x8 Vertical Left prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 7.
This mode shall be used only when the samples p[x, —1] with x = 0..15 are marked as "available for Intra_8x8 prediction".
The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:
— Ifyisequalto0,2,40r6

pred8X8L[X,y] = (p[x+(y>>1), -1]+p[x+(y>>1)+1-1]+1)>>1 (8-108)

Rec. ITU-T H.264 (08/2021) 143

Otherwise (y isequal to 1, 3, 5, 7),

pred8x8.[x, y]=(p[x+(y>>1),-1]+2*p[x+(y>>1)+1-1]+
pPIx+(y>>1)+2-1]+2)>>2 (8-109)

8.3.2.2.10 Specification of Intra_8x8 Horizontal _Up prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkldx] is equal to 8.

This mode shall be used only when the samples p[—1, y] with y = 0..7 are marked as "available for Intra_8x8 prediction".

Let the variable zHU be set equal to x + 2 *y.

The values of the prediction samples pred8x8.[X, y], with x, y = 0..7, are derived as follows:

8.3.3

If zHU isequal to 0, 2, 4, 6, 8, 10, or 12
pred8X8L[X, y] =(p[-1,y+(x>>1)]+p[-1y+(x>>1)+1]+1)>>1 (8-110)
Otherwise, if zHU isequal to 1, 3,5, 7, 9, or 11

pred8x8.[X, y]1=(p[-1, y+(x>>1)]+2*p[-1Ly+(x>1)+1]+
pPl-1Ly+(x>>1)+2]+2)>>2 (8-111)

Otherwise, if zHU is equal to 13,

predsx8L[x, y1=(p[-1,6]+3*p[-1,7]+2)>>2 (8-112)
Otherwise (zHU is greater than 13),

pred8x8.[x,y]1=p[-1,7] (8-113)

Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_16x16. It specifies how the Intra prediction
luma samples for the current macroblock are derived.

Input to this process is a (PicWidthInSamples,)x(PicHeightInSamples,) array ¢S containing constructed luma samples
prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction luma samples for the current macroblock pred.[x, y].

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with x = -1,
y =-1..15 and with x = 0..15, y = -1, are derived as specified by the following ordered steps:

1.

144

The derivation process for neighbouring locations in clause 6.4.12 is invoked for luma locations with (X, y)
assigned to (XN, yN) as input and mbAddrN and (xXW, yW) as output.

Each sample p[x, y] with x = -1, y =—1..15 and with x = 0..15, y = —1 is derived as follows:

— If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra_16x16
prediction":

— mbAddrN is not available,

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

— the macroblock mbAddrN has mb_type equal to Sl and constrained_intra_pred_flag is equal to 1.

— Otherwise, the sample p[X, y] is marked as "available for Intra_16x16 prediction” and the value of the sample
p[%, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (XM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

Rec. ITU-T H.264 (08/2021)

p[X,y] =CcSL[XM +xW, yM + 2 * yW] (8-114)
— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),
p[X, y]=cSL[XM + xW, yM + yW] (8-115)

Let pred.[x, y] with x, y =0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-4.

Table 8-4 — Specification of Intral6x16PredMode and associated names

Intral6x16PredMode Name of Intral6x16PredMode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intral6x16PredMode, one of the Intra_16x16 prediction modes specified in clauses 8.3.3.1 t0 8.3.3.4 is
invoked.

8.3.3.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, —1] with x = 0..15 are marked as "available
for Intra_16x16 prediction".

The values of the prediction samples pred,[X, y], with X, y = 0..15, are derived by
predi [x,y]=p[x,—1], with x,y =0..15 (8-116)

8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[—1, y] with y = 0..15 are marked as "available
for Intra_16x16 prediction™.

The values of the prediction samples pred, [X, y], with X, y = 0..15, are derived by
predi [x,y]1=p[-1, y], withx,y=0..15 (8-117)

8.3.3.3 Specification of Intra_16x16_DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as "available for
Intra_16x16 prediction”, as follows:

— If all neighbouring samples p[x, —1], with x = 0..15, and p[-1, y], with y = 0..15, are marked as "available for
Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

pred [x, y]= (ip[X',—l]+ ip[—l,y']+16) s 5 with x, y =0..15 (8-118)
X0 y=0

— Otherwise, if any of the neighbouring samples p[x, —1], with x = 0..15, are marked as "not available for Intra_16x16
prediction™ and all of the neighbouring samples p[—1, y], with y = 0..15, are marked as "available for Intra_16x16
prediction”, the prediction for all luma samples in the macroblock is given by:

pred. [X, y]= (ip[—l,y‘]+8) —s 4 With X, y=0..15 (8-119)
y=0

— Otherwise, if any of the neighbouring samples p[—1, y], with y = 0..15, are marked as "not available for Intra_16x16

prediction™ and all of the neighbouring samples p[x, —1], with x = 0..15, are marked as "available for Intra_16x16
prediction”, the prediction for all luma samples in the macroblock is given by:

predi [X, y]= (i p[x',~1]+8) >> 4 with x, y = 0..15 (8-120)

Rec. ITU-T H.264 (08/2021) 145

— Otherwise (some of the neighbouring samples p[x, —11], with x = 0..15, and some of the neighbouring samples
p[-1,y], withy =0..15, are marked as "not available for Intra_16x16 prediction"), the prediction for all luma samples
in the macroblock is given by:

predi[X, y]= (1 << (BitDepthy — 1)), with x, y=0..15 (8-121)

8.3.3.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, =1] with x = =1..15 and p[—1, y] with
y = 0..15 are marked as "available for Intra_16x16 prediction™.

The values of the prediction samples pred, [X, y], with X, y = 0..15, are derived by

pred [x,y]=Cliply((a+b*(x—-7)+c*(y—7)+16)>>5), withx, y =0..15, (8-122)
where

a=16*(p[-1,15]+p[15 -1]) (8-123)

b=(5*H+32)>>6 (8-124)

c=(5*V+32)>>6 (8-125)

and H and V are specified as

H:i(x‘+1)*(p[8+x',—1]-p[6-x',-1]) (8-126)

x=0

V= (y+1)*(p[-1,8+y]-p[-1,6-y']) (8-127)

y=0

8.3.4 Intra prediction process for chroma samples

This process is invoked for | and SI macroblock types. It specifies how the Intra prediction chroma samples for the current
macroblock are derived.

Inputs to this process are two (PicWidthInSamplesc)x(PicHeightInSamplesc) arrays ¢Scp and ¢Scr containing constructed
chroma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction chroma samples for the current macroblock predcp[X, y] and prede | X, y 1.
Depending on the value of ChromaArrayType, the following applies:

— If ChromaArrayType is equal to 3, the Intra prediction chroma samples for the current macroblock predcs[X, y] and
predc[X, y] are derived using the Intra prediction process for chroma samples with ChromaArray Type equal to 3 as
specified in clause 8.3.4.5.

— Otherwise (ChromaArrayType is equal to 1 or 2), the following text specifies the Intra prediction chroma samples for
the current macroblock predcs[X, y] and predei %, y 1.

Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to each
of the chroma blocks separately. The process specified in this clause is invoked for each chroma block. In the remainder
of this clause, chroma block refers to one of the two chroma blocks and the subscript C is used as a replacement of the
subscript Cb or Cr.

The neighbouring samples p[X, y] that are constructed chroma samples prior to the deblocking filter process, with x = —1,
y = —1..MbHeightC — 1 and with x = 0..MbWidthC — 1, y = -1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in clause 6.4.12 is invoked for chroma locations with (X, y)
assigned to (XN, yN) as input and mbAddrN and (xXW, yW) as output.

2. Each sample p[x, y] is derived as follows:

— If any of the following conditions are true, the sample p[X, y] is marked as "not available for Intra chroma
prediction":

— mbAddrN is not available,

146 Rec. ITU-T H.264 (08/2021)

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

— the macroblock mbAddrN has mb_type equal to Sl and constrained_intra_pred_flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

— Otherwise, the sample p[x, y] is marked as "available for Intra chroma prediction™ and the value of the sample
p[X, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (xL, yL).

b. The location (XM, yM) of the upper-left chroma sample of the macroblock mbAddr is derived by:

XM = (xL>>4)* MbWidthC (8-128)
yM = ((yL >>4)* MbHeightC) + (yL % 2) (8-129)

c. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[X, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,
P[X, y]1=cSc[XM +xW, yM + 2 * yW] (8-130)
— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),
p[X,y 1=cSc[XM + xW, yM + yW] (8-131)

Let predc[x, y] with x = 0..MbWidthC — 1, y = 0..MbHeightC — 1 denote the prediction samples for the chroma block
samples.

Intra chroma prediction modes are specified in Table 8-5.

Table 8-5 — Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode
0 Intra_Chroma_DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma_pred_mode, one of the Intra chroma prediction modes specified in clauses 8.3.4.1 t0 8.3.4.4
is invoked.

8.3.4.1 Specification of Intra_Chroma_DC prediction mode
This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 0.

For each chroma block of 4x4 samples indexed by chroma4x4Blkldx =0..(1 << (ChromaArrayType + 1)) —1, the
following applies:

— The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the current
macroblock is derived by invoking the inverse 4x4 chroma block scanning process in clause 6.4.7 with
chroma4x4Blkldx as the input and the output being assigned to (xO, yO).

— Depending on the values of xO and yO, the following applies:

— If (xO, yO) is equal to(0, 0) or xO and yO are greater than 0, the values of the prediction samples
predc[x + xO, y + yO] with x, y = 0..3 are derived as follows:

— Ifall samples p[x + xO, —11], with x =0..3, and p[-1, y +yO], with y = 0..3, are marked as "available for
Intra chroma prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are
derived as:

Rec. ITU-T H.264 (08/2021) 147

148

pred.[X +xO,y +yO] :(23: p[x'+x0,—1] + Zslp[fl, y'+yO] + 4] >>3, Withx, y =0..3. (8-132)
x'=0 y'=0

— Otherwise, if any samples p[x + xO, —1], with x =0..3, are marked as "not available for Intra chroma

prediction" and all samples p[—1,y +yO], with y=0..3, are marked as "available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with X, y = 0..3, are derived as:

3
pred [x+x0, y+ yO]:[z p[-1, y'+yO] + 2] >>2, withx,y =0..3. (8-133)

y'=0

— Otherwise, if any samples p[-1, y +yO], with y =0..3, are marked as "not available for Intra chroma

prediction" and all samples p[x +x0O, —1], with x =0..3, are marked as "available for Intra chroma
prediction”, the values of the prediction samples predc[x + X0, y + yO], with x, y = 0..3, are derived as:

pred.[x + xO, y+yO]:(i p[x'+x0,—1] + 2} >> 2, Withx, y =0..3. (8-134)

X'=0

— Otherwise (some samples p[x + xO, —1], with x =0..3, and some samples p[-1,y +yO], with y =0..3,
are marked as "not available for Intra chroma prediction™), the values of the prediction samples
predc[x + xO, y + yO], with x, y = 0..3, are derived as:

predc[x + xO, y +yO] = (1 << (BitDepthc — 1)), with x, y =0..3. (8-135)
Otherwise, if xO is greater than0 and yO is equal toO, the values of the prediction samples
predc[X + xO, y + yO] with x, y = 0..3 are derived as follows:

— If all samples p[x +xO, —11], with x = 0..3, are marked as "available for Intra chroma prediction”, the
values of the prediction samples predc[x + xO, y + yO], with X, y = 0..3, are derived as:

pred [X +xO, y + yO]=(i p[x'+x0,—1] + ZJ >> 2, Withx,y=0.3. (8-136)

x'=0

— Otherwise, if all samples p[-1,y +yO], with y=0.3, are marked as "available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

3
pred.[X+ X0, y+ yO]:[z p[-1, y+yO]+ 2] >>2, withx,y =0..3. (8-137)

y'=0

— Otherwise (some samples p[x +xO, —1], with x =0..3, and some samples p[-1,y +yO], with y =0..3,
are marked as "not available for Intra chroma prediction™), the values of the prediction samples
predc[x + XO, y + yO], with x, y = 0..3, are derived as:

predc[x + XO, y + yO] = (1 << (BitDepthc — 1)), with x, y =0..3. (8-138)

Otherwise (xO is equal to0 and yO is greater than0), the values of the prediction samples
predc[X + xO, y + yO] with x, y = 0..3 are derived as follows:

— Ifall samples p[-1, y +yO], with y = 0..3, are marked as "available for Intra chroma prediction", the values
of the prediction samples predc[x + X0, y + yO], with X, y = 0..3, are derived as:

3
pred [x+xO, y+ yO]:[Zp[—l, y'+yO]+ 2] >>2, withx, y =0..3. (8-139)

y'=0

— Otherwise, if all samples p[x +x0O,-1], with x=0..3, are marked as "available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

pred [X +xO, y + yO]=(i p[x'+x0,—1] + ZJ >> 2, Withx,y=0.3. (8-140)

x'=0

Rec. ITU-T H.264 (08/2021)

— Otherwise (some samples p[x + xO, —1], with x =0..3, and some samples p[-1,y +yO], with y =0..3,
are marked as "not available for Intra chroma prediction™), the values of the prediction samples
predc[x + xO, y + yO], with x, y = 0..3, are derived as:

predc[x + xO, y + yO] = (1 << (BitDepthc — 1)), with x, y =0..3. (8-141)

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode
This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 1.

This mode shall be used only when the samples p[—1, y] with y = 0..MbHeightC — 1 are marked as "available for Intra
chroma prediction™.

The values of the prediction samples predc[x, y] are derived as:

predc[X, y] =p[-1, y], with x = 0..MbWidthC — 1 and y = 0..MbHeightC — 1 (8-142)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode
This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 2.

This mode shall be used only when the samples p[x, —1] with x = 0..MbWidthC — 1 are marked as "available for Intra
chroma prediction™.

The values of the prediction samples predc[x, y] are derived as:
predc[X, y 1 =p[X, —1], with x = 0..MbWidthC — 1 and y = 0..MbHeightC — 1 (8-143)

8.3.4.4 Specification of Intra_Chroma_Plane prediction mode
This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 3.

This mode shall be used only when the samples p[x,—1], with x = 0.MbWidthC -1 and p[-1,y], with
y = —1..MbHeightC — 1 are marked as "available for Intra chroma prediction™.

Let the variable XCF be set equal to ((ChromaArrayType == 3) ? 4 : 0) and let the variable yCF be set equal to
((ChromaArrayType != 1) ? 4 : 0).

The values of the prediction samples predc|[X, y] are derived by:

prede[X, y 1= Cliple((a+b* (x~3-XCF) +c*(y—3—yCF)+16)>>5),

with x = 0..MbWidthC — 1 and y = 0..MbHeightC — 1 (8-144)
where
a=16* (p[-1, MbHeightC — 1] + p[MbWidthC - 1,-1]) (8-145)
b=((34—-29*(ChromaArrayType ==3))*H+32)>>6 (8-146)
c=((34—29* (ChromaArrayType != 1))*V+32)>>6 (8-147)
and H and V are specified as:
3+ xCF
H= > (x+1)*(p[4+XCF +x',~1]-p[2+XCF - X', ~1) (8-148)
x=0
V= Sy * (-1 4+ yOF +y']— p[-L 2+ yCF — y']) (8-149)
y=o

8.3.4.5 Intra prediction for chroma samples with ChromaArrayType equal to 3

This process is invoked when ChromaArrayType is equal to 3. This process is invoked for | and SI macroblock types. It
specifies how the Intra prediction chroma samples for the current macroblock are derived when ChromaArrayType is equal
to 3.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring Cb and Cr blocks
and for Intra_NxN (where NxN is equal to 4x4 or 8x8) prediction mode, the associated values of IntraNxNPredMode from
neighbouring macroblocks.

Rec. ITU-T H.264 (08/2021) 149

Outputs of this process are the Intra prediction samples of the Cb and Cr components of the macroblock or in case of the
Intra_NXN prediction process, the outputs are NxN Ch sample arrays as part of the 16x16 Cb array of prediction samples
of the macroblock, and NxN Cb sample arrays as part of the 16x16 Cb array of prediction samples of the macroblock.

Each Cb, Cr, and luma block with the same block index of the macroblock use the same prediction mode. The prediction
mode is applied to each of the Cb and Cr blocks separately. The process specified in this clause is invoked for each Cb and
Cr block.

Depending on the macroblock prediction mode, the following applies:

8.3.5

If the macroblock prediction mode is equal to Intra_4x4, the following applies:

The same process described in clause 8.3.1 is also applied to Cb or Cr samples, substituting luma with Cb or Cr,
substituting lumadx4Blkldx with cb4x4Blkldx or crdx4Blkldx, substituting pred4x4. with pred4xdc, or
pred4x4cr, and substituting BitDepthy with BitDepthc.

The output variable Intradx4PredMode[lumadx4BIkldx] from the process described in clause 8.3.1.1 is also used
for the 4x4 Cb or 4x4 Cr blocks with index luma4x4BIkldx equal to index ch4x4Blkldx or cr4x4Blkldx.

The process to derive prediction Cb or Cr samples is identical to the process described in clause 8.3.1.2 and its
subsequent subclauses when substituting luma with Cb or Cr, substituting pred4x4, with pred4x4cy, or pred4x4c,
and substituting BitDepthy with BitDepthc.

Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the following applies:

The same process described in clause 8.3.2 is also applied to Cb or Cr samples, substituting luma with Cb or Cr,
substituting luma8x8Blkldx with ch8x8Blkldx or cr8x8BIkldx, substituting pred8x8. with pred8x8cp or
pred8x8cr, and substituting BitDepthy with BitDepthc.

The output variable Intra8x8PredMode[luma8x8Blkldx] from the process described in clause 8.3.2.1 is used for
the 8x8 Cb or 8x8 Cr blocks with index luma8x8Blkldx equal to index cb8x8Blkldx or cr8x8BIkldx.

The process to derive prediction Cb or Cr samples is identical to the process described in clause 8.3.2.2 and its
subsequent subclauses when substituting luma with Cb or Cr, substituting pred8x8, with pred8x8c;, or pred8x8cr,
and substituting BitDepthy with BitDepthc.

Otherwise (the macroblock prediction mode is equal to Intra_16x16), the same process described in clause 8.3.3 and
its subsequent subclauses is also applied to Cb or Cr samples, substituting luma with Cb or Cr, substituting pred, with
predcy or predcr, and substituting BitDepthy with BitDepthc.

Sample construction process for I_PCM macroblocks

This process is invoked when mb_type is equal to I_PCM.

The variable dy is derived as follows:

If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock, dy is set equal to 2.

Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock), dy is set equal to 1.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in clause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed luma samples prior to the deblocking process are generated as specified by:

150

for(i=0;i<256;i++)

S [xXP+(i1%16),yP+dy*(i/16))]=pcm_sample_luma[i] (8-150)

Rec. ITU-T H.264 (08/2021)

When ChromaArrayType is not equal to 0, the constructed chroma samples prior to the deblocking process are generated
as specified by:

for(i =0; i < MbWidthC * MbHeightC; i++) {
S'co[(XP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1) / SubHeightC) + dy * (i/ MbWidthC)] =
pcm_sample_chroma[i] (8-151)
S'ci[(xP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1) / SubHeightC) + dy * (i / MbWidthC)] =
pcm_sample_chroma[i + MbWidthC * MbHeightC]

8.4 Inter prediction process
This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred, of luma samples
and when ChromaArrayType is not equal to 0 two (MbWidthC)x(MbHeightC) arrays predcy, and predcr of chroma samples,
one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further
partitioned into sub-macroblock partitions as specified by sub_mb_type[mbPartldx]. Each sub-macroblock partition is
referred to by subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is set
equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.

The range of the macroblock partition index mbPartldx is derived as follows:
— Ifmb_type is equal to B_Skip or B_Direct_16x16, mbPartldx proceeds over values 0..3.

— Otherwise (mb_type is not equal to B _Skip or B_Direct 16x16), mbPartldx proceeds over values
0..NumMbPart(mb_type) — 1.

For each value of mbPartldx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock
partition in the macroblock are derived as follows:

— If mb_type is not equal to P_8x8, P_8x8ref0, B_Skip, B_Direct_16x16, or B_8x8, subMbPartldx is set equal to 0,
and partWidth and partHeight are derived as:

partWidth = MbPartWidth(mb_type) (8-152)
partHeight = MbPartHeight(mb_type) (8-153)
— Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0, or mb_type is equal to B_8x8 and sub_mb_type[mbPartldx]
is not equal to B_Direct_8x8, subMbPartldx proceeds over values
0..NumSubMbPart(sub_mb_type[mbPartldx]) — 1, and partWidth and partHeight are derived as:
partWidth = SubMbPartWidth(sub_mb_type[mbPartldx]) (8-154)
partHeight = SubMbPartHeight(sub_mb_type[mbPartldx]). (8-155)
— Otherwise (mb_type is equal to B_Skip or B_Direct_16x16, or mb_type is equal to B_8x8 and
sub_mb_type[mbPartldx] is equal to B_Direct_8x8), subMbPartldx proceeds over values 0..3, and partWidth and
partHeight are derived as:

partWidth = 4 (8-156)

partHeight = 4 (8-157)

Rec. ITU-T H.264 (08/2021) 151

When ChromaArrayType is not equal to 0, the variables partWidthC and partHeightC are derived as:

partwWidthC = partWidth / SubWidthC (8-158)
partHeightC = partHeight / SubHeightC (8-159)

Let the variable MvCnt be initially set equal to 0 before any invocation of clause 8.4.1 for the macroblock.

The

Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx consists

of the following ordered steps:

1.

The derivation process for motion vector components and reference indices as specified in clause 8.4.1 is invoked.
Inputs to this process are:

— amacroblock partition mbPartldx,

— asub-macroblock partition subMbPartldx.

Outputs of this process are:

— luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCLO and mvCL1

— reference indices refldxL0 and refldxL1

— prediction list utilization flags predFlagL0 and predFlagL1

— the sub-macroblock partition motion vector count subMvCnt.
The variable MvCnt is incremented by subMvCnt.

When (weighted_pred_flag is equal to 1 and (slice_type % 5) is equal to 0 or 3) or (weighted_bipred_idc is greater
than 0 and (slice_type % 5) is equal to 1), the derivation process for prediction weights as specified in clause 8.4.3 is
invoked.

Inputs to this process are:
— reference indices refldxL0 and refldxL1
— prediction list utilization flags predFlagL0 and predFlagL1

Outputs of this process are variables for weighted prediction logWDc, Woc, Wic, Ooc, 01c With C being replaced by L
and, when ChromaArrayType is not equal to 0, Cb and Cr.

The decoding process for Inter prediction samples as specified in clause 8.4.2 is invoked.
Inputs to this process are:

— amacroblock partition mbPartldx,

— asub-macroblock partition subMbPartldx,

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available), and partHeightC (if available),

— luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors
mvCLO and mvCL1,

— reference indices refldxL0 and refldxL1,
— prediction list utilization flags predFlagL0 and predFlagL1,

— variables for weighted prediction logWDc, Woc, Wic, Ooc, 0O1c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart,_ of
prediction luma samples and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays
predPartc, and predPartc, of prediction chroma samples, one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

152

MvLO[mbPartldx][subMbPartldx] = mvLO (8-160)

MvL1[mbPartldx][subMbPartldx] = mvL1 (8-161)

Rec. ITU-T H.264 (08/2021)

RefldxLO[mbPartldx] = refldxL0 (8-162)

RefldxL1[mbPartldx] = refldxL1 (8-163)
PredFlagLO[mbPartldx] = predFlagL0 (8-164)
PredFlagL1[mbPartldx] = predFlagL1 (8-165)

The location of the upper-left sample of the macroblock partition relative to the upper-left sample of the macroblock is
derived by invoking the inverse macroblock partition scanning process as described in clause 6.4.2.1 with mbPartldx as
the input and (xP, yP) as the output.

The location of the upper-left sample of the sub-macroblock partition relative to the upper-left sample of the macroblock
partition is derived by invoking the inverse sub-macroblock partition scanning process as described in clause 6.4.2.2 with
subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the macroblock or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable pred, [XP + xS + X, yP +yS +y] with x = 0..partWidth — 1, y = 0..partHeight — 1 is derived by:
predi [XP + xS + X, yP +yS +y] =predPart. [X, ¥] (8-166)

When ChromaArrayType is not equal to 0, the variable predc with x = 0..partWidthC — 1, y = 0..partHeightC — 1, and C
in predc and predPartc being replaced by Cb or Cr is derived by:

predc[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPartc[X, y]
(8-167)
8.4.1 Derivation process for motion vector components and reference indices
Inputs to this process are:
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartldx.
Outputs of this process are:

— luma motion vectors mvLO and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors
mvCLO and mvCL1,

— reference indices refldxL0 and refldxL1,

— prediction list utilization flags predFlagL0 and predFlagL1,

— amotion vector count variable subMvCnt.

For the derivation of the variables mvLO and mvL1 as well as refldxL0 and refldxL1, the following applies:

— If mb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in clause 8.4.1.1 is invoked with the output being the luma motion vectors mvLO0 and reference indices refldxL0,
and predFlagLO is set equal to 1. mvL1 and refldxL1 are marked as not available and predFlagL1 is set equal to O.
The motion vector count variable subMvCnt is set equal to 1.

— Otherwise, if mb_type is equal to B_Skip or B_Direct_16x16 or sub_mb_type[mbPartldx] is equal to B_Direct_8x8,
the derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct 8x8 in B slices in
clause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma motion vectors
mvL0, mvL1l, the reference indices refldxLO, refldxL1, the motion vector count variable subMvCnt, and the
prediction utilization flags predFlagL0 and predFlagL1.

— Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refldxLX, and in Pred_LX and
in the syntax elements ref_idx_IX and mvd_1X, the following applies:

1. The variables refldxLX and predFlagLX are derived as follows:

— If MbPartPredMode(mb_type, mbPartldx) or SubMbPredMode(sub_mb_type[mbPartldx]) is equal
to Pred_LX or to BiPred,

refldxLX = ref_idx_IX[mbPartldx] (8-168)

Rec. ITU-T H.264 (08/2021) 153

predFlagLX =1 (8-169)
— Otherwise, the variables refldxLX and predFlagLX are specified by

refldxLX = -1 (8-170)
predFlagLX =0 (8-171)

2. The motion vector count variable subMvCnt is set equal to predFlagL0 + predFlagL1.

3. The variable currSubMbType is derived as follows:
— If the macroblock type is equal to B_8x8, currSubMbType is set equal to sub_mb_type[mbPartldx].
— Otherwise (the macroblock type is not equal to B_8x8), currSubMbType is set equal to "na".

4. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in clause 8.4.1.3 is
invoked with mbPartldx subMbPartldx, refldxLX, and currSubMbType as the inputs and the output being
mvpLX. The luma motion vectors are derived by

mvLX[0] =mvpLX][0]+ mvd_IX[mbPartldx][subMbPartldx][O] (8-172)
mvLX[1] =mvpLX[1]+ mvd_IX[mbPartldx][subMbPartldx][1] (8-173)

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation process
for chroma motion vectors in clause 8.4.1.4 is invoked with mvLX and refldxLX as input and the output being mvCLX.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices
This process is invoked when mb_type is equal to P_Skip.
Outputs of this process are the motion vector mvLO and the reference index refldxLO.

The reference index refldxL0 for a skipped macroblock is derived as:

refldxL0 = 0. (8-174)

For the derivation of the motion vector mvLO of a P_Skip macroblock type, the following ordered steps are specified:

1. The process specified in clause 8.4.1.3.2 is invoked with mbPartldx set equal to 0, subMbPartldx set equal to O,
currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to mbAddrA,
mbAddrB, mvLOA, mvLOB, refldxLOA, and refldxLOB.

2. The variable mvLO is specified as follows:
— Ifany of the following conditions are true, both components of the motion vector mvLO are set equal to 0:
— mbAddrA is not available,
— mbAddrB is not available,
— refldxLOA is equal to 0 and both components of mvLOA are equal to 0,
— refldxLOB is equal to 0 and both components of mvLOB are equal to 0.

— Otherwise, the derivation process for luma motion vector prediction as specified in clause 8.4.1.3 is invoked
with mbPartldx = 0, subMbPartldx = 0, refldxL0, and currSubMbType = "na" as inputs and the output is
assigned to mvLO.

NOTE — The output is directly assigned to mvLO0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B_Direct_16x16, or sub_mb_type[mbPartldx] is equal to
B_Direct_8x8.

Inputs to this process are mbPartldx and subMbPartldx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvL0 and mvL1, the motion vector
count variable subMvCnt, and the prediction list utilization flags, predFlagL0 and predFlagL1.

The derivation process depends on the value of direct_spatial_mv_pred_flag, which is present in the bitstream in the slice
header syntax as specified in clause 7.3.3, and is specified as follows:

154 Rec. ITU-T H.264 (08/2021)

— If direct_spatial_mv_pred_flag is equal to 1, the mode in which the outputs of this process are derived is referred to
as spatial direct prediction mode.

— Otherwise (direct_spatial_ mv_pred_flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
clause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows:

— If spatial direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
clause 8.4.1.2.2 is used, with subMvCnt being an output.

— Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in clause 8.4.1.2.3 is used and the variable subMvCnt is derived as follows:

— If subMbPartldx is equal to 0, subMvCnt is set equal to 2.
— Otherwise (subMbPartldx is not equal to 0), subMvCnt is set equal to 0.

8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx and subMbPartldx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refldxCol, and the variable vertMvScale (which can be One_To_One, Frm_To_FId or Fld_To_Frm).

When RefPicListl[0] is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL1Bottom be the top
and bottom fields of RefPicList1[0], respectively, and let the following variables be specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Top, CurrPic))

bottomAbsDIiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Bottom, CurrPic))

(8-175)

(8-176)

The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-6.

Table 8-6 — Specification of the variable colPic

field_pic_flag | RefPicListl[0] | mb_field_decoding_flag | additional condition colPic
is ...
a field of a the frame containing
1 decoded frame RefPicList1[O]
a decoded field RefPicList1[O]
? decoded RefPicListl[0]
rame
topAbsDIffPOC < . .
boﬁtomAbsDiffPOC firstRefPicl.1Top
0 a 0 :
topAbsDiffPOC >= . .
complementary boﬂtom AbsDiffPOC firstRefPicL1Bottom
field pair
P 1 (CurrMbAddr & 1) == firstRefPicL1Top
(CurrMbAddr& 1) !1=0 firstRefPicL1Bottom

NOTE — The picture order count values of a complementary field pair marked as "used for long-term reference" have an impact on
the decoding process when the current picture is a coded frame, the current macroblock is a frame macroblock, and the
complementary field pair marked as "used for long-term reference" is the first picture in reference list 1.

Let PicCodingStruct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-7.

Table 8-7 — Specification of PicCodingStruct(X)

X is coded with field pic_flag equal to ... | mb_adaptive_frame_field_flag | PicCodingStruct(X)
1 FLD
0 0 FRM
0 1 AFRM

Rec. ITU-T H.264 (08/2021) 155

The variable luma4x4BIkldx is derived as follows:

— Ifdirect_8x8 inference_flag is equal to 0, luma4x4Blkldx is set equal to (4 * mbPartldx + subMbPartldx).
— Otherwise (direct_8x8_inference_flag is equal to 1), luma4x4BIkldx is set equal to (5 * mbPartldx).

The inverse 4x4 luma block scanning process as specified in clause 6.4.3 is invoked with luma4x4BIkldx as the input and

(x,y) assigned to (xCol, yCol) as the output.

Table 8-8 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address mbAddrX depending on PicCodingStruct(CurrPic), and

PicCodingStruct(colPic).

NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)

because these picture coding types must be separated by an IDR picture.

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field_decoding_flag and the variable

fieldDecodingFlagX, which is derived as follows:

— If the macroblock mbAddrX in the picture colPic is a field macroblock, fieldDecodingFlagX is set equal to 1.

— Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is set

equal to 0.

Unspecified values in Table 8-8 indicate that the value of the corresponding variable is not relevant for the current table

row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.

mbAddrColl = 2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +
(CurrMbAddr % PicWidthInMbs) + PicWidthinMbs * (yCol / 8)

mbAddrCol2 = 2 * CurrMbAddr + (yCol / 8)
mbAddrCol3 = 2 * CurrMbAddr + bottom_field_flag

mbAddrCol4 = PicWidthinMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +
(CurrMbAddr % PicWidthinMbs)

mbAddrCol5 = CurrMbAddr / 2
mbAddrCol6 = 2 * (CurrMbAddr / 2)) + ((topAbsDiffPOC < bottomAbsDiffPOC) ?0:1)

mbAddrCol7 =2 * (CurrMbAddr / 2) + (yCol / 8)

156 Rec. ITU-T H.264 (08/2021)

(8-177)
(8-178)

(8-179)

(8-180)
(8-181)
(8-182)

(8-183)

Table 8-8 — Specification of mbAddrCol, yM, and vertMvScale

E N =
- =%
> Q o| ©
S| 5 x |55l 8 3
= S S S|E 5 s ?
s | & $ g8 3 3 2
2} =2 = 8 oS jut
E’ = S - [a) [)
= o 2|5 >
8 S Tl
Q 2 ik
= o
FLD CurrMbAddr yCol One_To_One
FRM mbAddrColl (2*yCol) % 16 Frm_To_FId
FLD
0 | mbAddrCol2 (2*yCol) % 16 Frm_To_FId
AFRM | 2*CurrMbAddr
1 | mbAddrCol3 yCol One_To _One
* S 0
FLD mbAddrCol4 |2 ((C””begi” P(':C‘?’/'%th'“'\"bs)/" 2| F1d_To_Frm
FRM (yCol/8)
FRM CurrMbAddr yCol One_To_One
0 mbAddrCol5 | 8 * (CurrMbAddr % 2) +4 * (yCol/8) | FId_To_Frm
FLD
1 mbAddrCol5 yCol One_To _One
0 | CurrMbAddr yCol One_To_One
AFRM CurrMbAddr | 0
1 | mbAddrCol6 | 8* (CurrMbAddr% 2)+4*(yCol/8) | Fld_To _Frm
AFRM
0 | mbAddrCol7 (2*yCol) % 16 Frm_To_FId
CurrMbAddr | 1
1 | CurrMbAddr yCol One_To _One

Let mbTypeCol be the syntax element mb_type of the macroblock with address mbAddrCol inside the picture colPic and,
when mbTypeCol is equal to P_8x8, P_8x8ref0, or B_8x8, let subMbTypeCol be the syntax element list sub_mb_type of
the macroblock with address mbAddrCol inside the picture colPic.

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the sub-macroblock
partition index of the co-located sub-macroblock partition. The derivation process for macroblock and sub-macroblock
partition indices as specified in clause 6.4.13.4 is invoked with the luma location (xCol, yM), the macroblock type
mbTypeCol, and, when mbTypeCol is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock types
subMbTypeCol as the inputs and the outputs are the macroblock partition index mbPartldxCol and the sub-macroblock
partition index subMbPartldxCol.

The motion vector mvCol and the reference index refldxCol are derived as follows:

— If the macroblock mbAddrCol is coded in an Intra macroblock prediction mode, both components of mvCol are set
equal to 0 and refldxCol is set equal to —1.

— Otherwise (the macroblock mbAddrCol is not coded in an Intra macroblock prediction mode), the prediction

utilization flags predFlagLOCol

and predFlagL1Col

are set equal

to PredFlagLO[mbPartldxCol] and

PredFlagL1[mbPartldxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartldxCol inside the picture colPic, and the following applies:

If predFlagLOCol is equal to 1, the motion vector mvCol and the reference index refldxCol are set equal to
MvLO[mbPartldxCol][subMbPartldxCol] and RefldxLO[mbPartldxCol], respectively, which are the motion
vector mvLO and the reference index refldxLO that have been assigned to the (sub-)macroblock partition
mbAddrCol\mbPartldxCol\subMbPartldxCol inside the picture colPic.

Rec. ITU-T H.264 (08/2021)

157

— Otherwise (predFlagL0Col is equal to 0 and predFlagL1Col is equal to 1), the motion vector mvCol and the
reference index refldxCol are set equal to MvL1[mbPartldxCol][subMbPartldxCol] and
RefldxL1[mbPartldxCol], respectively, which are the motion vector mvL1 and the reference index refldxL1
that have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside
the picture colPic.

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode

This process is invoked when direct_spatial_mv_pred_flag is equal to 1 and any of the following conditions are true:
— mb_type is equal to B_SkKip,

— mb_type is equal to B_Direct_16x16,

— sub_mb_type[mbPartldx] is equal to B_Direct_8x8.

Inputs to this process are mbPartldx, subMbPartldx.

Outputs of this process are the reference indices refldxLO0, refldxL1, the motion vectors mvL0 and mvL1, the motion vector
count variable subMvCnt, and the prediction list utilization flags, predFlagL0 and predFlagL1.

The reference indices refldxL0O and refldxL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. Let the variable currSubMbType be set equal to sub_mb_type[mbPartldx].

2. The process specified in clause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType, and
listSuffixFlag = 0 as inputs and the output is assigned to the motion vectors mvLON and the reference indices
refldxLON with N being replaced by A, B, or C.

3. The process specified in clause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType, and
listSuffixFlag = 1 as inputs and the output is assigned to the motion vectors mvL1N and the reference indices
refldxL1N with N being replaced by A, B, or C.

NOTE 1 — The motion vectors mvLON, mvL1N and the reference indices refldxLON, refldxL1N are identical for all 4x4 sub-
macroblock partitions of a macroblock.

4. The reference indices refldxLO, refldxL1, and directZeroPredictionFlag are derived by:

refldxL0 = MinPositive(refldxLOA, MinPositive(refldxLOB, refldxL0C)) (8-184)

refldxL1 = MinPositive(refldxL1A, MinPositive(refldxL1B, refldxL1C)) (8-185)

directZeroPredictionFlag = 0 (8-186)
where

Min(x,y) if x>=0andy>=0 (8-187)

MinPositive(x, y) :{Max(x y) otherwise

5. When both reference indices refldxL0 and refldxL1 are less than 0,

refldxLO =0 (8-188)
refldxL1 =0 (8-189)
directZeroPredictionFlag = 1 (8-190)

The process specified in clause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCol.

The variable colZeroFlag is derived as follows:
— Ifall of the following conditions are true, colZeroFlag is set equal to 1:
— RefPicListl[0] is currently marked as "used for short-term reference”,
— refldxCol is equal to 0,
— both motion vector components mvCol[0] and mvCol[1] lie in the range of —1 to 1 in units specified as follows:

— If the co-located macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
quarter luma frame samples.

— Otherwise (the co-located macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are
units of quarter luma field samples.

158 Rec. ITU-T H.264 (08/2021)

NOTE 2 - For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of a motion vector
for the current macroblock in cases when the current macroblock is a frame macroblock and the co-located macroblock is a field
macroblock or when the current macroblock is a field macroblock and the co-located macroblock is a frame macroblock. This aspect
differs from the use of mvCol[1] in the temporal direct mode as specified in clause 8.4.1.2.3, which applies scaling to the motion
vector of the co-located macroblock to use the same units as the units of a motion vector for the current macroblock, using
Equation 8-193 or Equation 8-194 in these cases.

— Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows:

— If any of the following conditions are true, both components of the motion vector mvLX are set equal to O:
— directZeroPredictionFlag is equal to 1,
— refldxLX is less than 0,
— refldxLX is equal to 0 and colZeroFlag is equal to 1.

— Otherwise, the process specified in clause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = 0, refldxLX, and
currSubMbType as inputs and the output is assigned to mvLX.

NOTE 3 — The motion vector mvLX returned from clause 8.4.1.3 is identical for all 4x4 sub-macroblock partitions of a
macroblock for which the process is invoked.

The prediction utilization flags predFlagL0 and predFlagL.1 are derived as specified using Table 8-9.

Table 8-9 — Assignment of prediction utilization flags

refldxL0 refldxL1 predFlagL0 predFlagL1
>=0 >=0 1 1
>=0 <0 1 0
<0 >=0 0 1

The variable subMvCnt is derived as follows:
— If subMbPartldx is not equal to 0, subMvCnt is set equal to 0.
— Otherwise (subMbPartldx is equal to 0), subMvCnt is set equal to predFlagL0 + predFLagL1.

8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode
This process is invoked when direct_spatial_mv_pred_flag is equal to 0 and any of the following conditions are true:
— mb_type is equal to B_SKip,

— mb_type is equal to B_Direct_16x16,

— sub_mb_type[mbPartldx] is equal to B_Direct_8x8.

Inputs to this process are mbPartldx and subMbPartldx.

Outputs of this process are the motion vectors mvLO and mvL1, the reference indices refldxLO and refldxL1, and the
prediction list utilization flags, predFlagL0 and predFlagL1.

The process specified in clause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refldxCol, and vertMvScale.

The reference indices refldxL0 and refldxL1 are derived as

refldxL0 = ((refldxCol <0) ? 0 : MapColToListO(refldxCol)) (8-191)
refldxL1 =0 (8-192)

NOTE 1 — If the current macroblock is a field macroblock, refldxLO and refldxL1 index a list of fields; otherwise (the current
macroblock is a frame macroblock), refldxLO0 and refldxL1 index a list of frames or complementary reference field pairs.

Let refPicCol be a frame, a field, or a complementary field pair that was referred by the reference index refldxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapColToListO(refldxCol) is
specified as follows:

Rec. ITU-T H.264 (08/2021) 159

— If vertMvScale is equal to One_To_One, the following applies:
— Iffield_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies:

— Let refldxLOFrm be the lowest valued reference index in the current reference picture list RefPicListO that
references the frame or complementary field pair that contains the field refPicCol. RefPicList0 shall contain
a frame or complementary field pair that contains the field refPicCol. The return value of MapColToListO()
is specified as follows:

— If the field referred to by refldxCol has the same parity as the current macroblock,
MapColToListO(refldxCol) returns the reference index (refldxLOFrm << 1).

— Otherwise (the field referred by refldxCol has the opposite parity of the current macroblock),
MapColToListO(refldxCol) returns the reference index ((refldxLOFrm<<1)+1).

— Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock),
MapColToL.istO(refldxCol) returns the lowest valued reference index refldxLO0 in the current reference picture
list RefPicList0 that references refPicCol. RefPicList0 shall contain refPicCol.

— Otherwise, if vertMvScale is equal to Frm_To_FId, the following applies:

— If field_pic_flag is equal to 0, let refldxLOFrm be the lowest valued reference index in the current reference
picture list RefPicListO that references refPicCol. MapColToListO(refldxCol) returns the reference index
(refldxLOFrm << 1). RefPicList0 shall contain refPicCol.

— Otherwise (field_pic_flag is equal to 1), MapColToListO(refldxCol) returns the lowest valued reference index
refldxLO in the current reference picture list RefPicListO that references the field of refPicCol with the same
parity as the current picture CurrPic. RefPicListO shall contain the field of refPicCol with the same parity as the
current picture CurrPic.

— Otherwise (vertMvScale is equal to FId_To_Frm), MapColToListO(refldxCol) returns the lowest valued reference
index refldxLO0 in the current reference picture list RefPicListO that references the frame or complementary field pair
that contains refPicCol. RefPicList0 shall contain a frame or complementary field pair that contains the field
refPicCol.

NOTE 2 — A decoded reference picture that was marked as "used for short-term reference” when it was referenced in the
decoding process of the picture containing the co-located macroblock may have been modified to be marked as "used for
long-term reference" before being used for reference for inter prediction using the direct prediction mode for the current
macroblock.

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows:

— If vertMvScale is equal to Frm_To_FId

mvCol[1]=mvCol[1]/2 (8-193)
— Otherwise, if vertMvScale is equal to FId_To_Frm

mvCol[1]=mvCol[1] *2 (8-194)

— Otherwise (vertMvScale is equal to One_To_One), mvCol[1] remains unchanged.

The variables currPicOrField, pic0O, and picl, are derived as follows:

— Iffield_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies:
1. currPicOrField is the field of the current picture CurrPic that has the same parity as the current macroblock.
2. piclis the field of RefPicList1[0] that has the same parity as the current macroblock.
3. The variable pic0 is derived as follows:

— If refldxL0O % 2 is equal to 0, picO is the field of RefPicListO[refldxLO0 / 2] that has the same parity as
the current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicListO[refldxL0 /2] that has the
opposite parity of the current macroblock.

— Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the current
picture CurrPic, picl is the decoded reference picture RefPicListl[0], and picO is the decoded reference picture
RefPicListO[refldxLO].

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived as
follows:

160 Rec. ITU-T H.264 (08/2021)

NOTE 3 — It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and reference
pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample values in
larger units than 4x4 luma sample blocks. For example, when direct_8x8_inference_flag is equal to 1, at least each 8x8

luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

the motion vectors mvL0, mvL1 for the direct mode partition are derived by:

mvLO = mvCol

mvL1=0

co-located sub-macroblock partition as specified below (see Figure 8-2).

If the reference index refldxLO refers to a long-term reference picture, or DiffPicOrderCnt(picl, pic0) is equal to 0,

(8-195)

(8-196)

Otherwise, the motion vectors mvLO, mvL1 are derived as scaled versions of the motion vector mvCol of the

tx=(16 384 + Abs(td/2))/td (8-197)

DistScaleFactor = Clip3(-1024, 1023, (tb*tx +32) >>6) (8-198)

mvL0 = (DistScaleFactor * mvCol + 128) >> 8 (8-199)

mvL1 = mvLO — mvCol (8-200)
where th and td are derived as:

tb = Clip3(-128, 127, DiffPicOrderCnt(currPicOrField, pic0)) (8-201)

td = Clip3(-128, 127, DiffPicOrderCnt(picl, pic0)) (8-202)

NOTE 4 — mvLO and mvL1 cannot exceed the ranges specified in Annex A.

The prediction utilization flags predFlagL0 and predFlagL1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between the

reference picture from reference picture list 0 and the reference picture from reference picture list 1.

List O reference Current B List 1 reference

Co-located partition

Direct-mode B partition/']xﬂb]
< td .
. th R
Time
H.264(09)_F8-2

Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)

8.4.1.3 Derivation process for luma motion vector prediction

Inputs to this process are:

— the macroblock partition index mbPartldx,

— the sub-macroblock partition index subMbPartldx,

— the reference index of the current partition refldxLX (with X being 0 or 1),

— the variable currSubMbType.

Rec. ITU-T H.264 (08/2021)

161

Output of this process is the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The

derivation process for the neighbouring blocks for motion data in clause 8.4.1.3.2 is invoked with mbPartldx,

subMbPartldx, currSubMbType, and listSuffixFlag = X (with X being 0 or 1 for refldxLX being refldxLO or refldxL1,
respectively) as the input and with mbAddrN\mbPartldxN\subMbPartldxN, reference indices refldxLXN and the motion
vectors mvLXN with N being replaced by A, B, or C as the output.

The motion vector predictor mvpLX is derived as follows:

If MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal to 0, and
refldxLXB is equal to refldxLX, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXB (8-203)

Otherwise, if MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal to 1,
and refldxLXA is equal to refldxLX, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXA (8-204)

Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal to 0,
and refldxLXA is equal to refldxLX, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXA (8-205)

Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal to 1,
and refldxLXC is equal to refldxLX, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXC (8-206)

Otherwise, the derivation process for median luma motion vector prediction in clause 8.4.1.3.1 is invoked with
mbAddrN\mbPartldxN\subMbPartldxN, mvLXN, refldxLXN with N being replaced by A, B, or C, and refldxLX as
the inputs and the output is assigned to the motion vector predictor mvpLX.

Figure 8-3 illustrates the non-median prediction as specified in Equations 8-203 to 8-206.

8*16 16*8

H.264(09)_F8-3

Figure 8-3 — Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are:

the neighbouring partitions mbAddrN\mbPartldxN\subMbPartldxN (with N being replaced by A, B, or C),
the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,
the reference indices refldxLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

the reference index refldxLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

162

Rec. ITU-T H.264 (08/2021)

The variable mvpLX is derived as specified by the following ordered steps:

1. When both partitions mbAddrB\mbPartldxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not
available and mbAddrA\mbPartldxA\subMbPartldxA is available,

mvLXB = mvLXA (8-207)
mvLXC = mvLXA (8-208)
refldxLXB = refldxLXA (8-209)
refldxLXC = refldxLXA (8-210)

2. Depending on reference indices refldxLXA, refldxLXB, or refldxLXC, the following applies:

— If one and only one of the reference indices refldxLXA, refldxLXB, or refldxLXC is equal to the reference
index refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is
equal to refldxLX, the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN (8-211)

— Otherwise, each component of the motion vector prediction mvpLX is given by the median of the
corresponding vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-212)
mvpLX[1] = Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-213)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions
Inputs to this process are:

— the macroblock partition index mbPartldx,

— the sub-macroblock partition index subMbPartldx,

— the current sub-macroblock type currSubMbType,

— the list suffix flag listSuffixFlag.

Outputs of this process are (with N being replaced by A, B, or C)

— mbAddrN\mbPartldxN\subMbPartldxN specifying neighbouring partitions,
— the motion vectors mvLXN of the neighbouring partitions,

— the reference indices refldxLXN of the neighbouring partitions.

Variable names that include the string "LX" are interpreted with the X being equal to listSuffixFlag.

The partitions mbAddrN\mbPartldxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps:

1. Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

2. The process in clause 6.4.11.7 is invoked with mbPartldx, currSubMbType, and subMbPartldx as input and the
output is assigned to mbAddrN\mbPartldxN\subMbPartldxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartldxC\subMbPartldxC is not available, the following applies:

mbAddrC = mbAddrD (8-214)
mbPartldxC = mbPartldxD (8-215)
subMbPartldxC = subMbPartldxD (8-216)

Rec. ITU-T H.264 (08/2021) 163

The motion vectors mvLXN and reference indices refldxLXN (with N being A, B, or C) are derived as follows:

If the macroblock partition or sub-macroblock partition mbAddrN\mbPartidxN\subMbPartldxN is not available or
mbAddrN is coded in an Intra macroblock prediction mode or predFlagLX of mbAddrN\mbPartldxN\subMbPartldxN
is equal to 0, both components of mvLXN are set equal to 0 and refldxLXN is set equal to —1.

Otherwise, the following ordered steps are specified:

1. The motion vector mvLXN and reference index refldxLXN are set equal to
MvLX[mbPartldxN][subMbPartldxN] and RefldxLX[mbPartldxN], respectively, which are the motion
vector mvLX and reference index refldxLX that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartldxN\subMbPartldxN.

2. The variables mvLXN[1] and refldxLXN are further processed as follows:

— If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame macroblock

MVLXN[1]=mvLXN[1]/2 (8-217)

refldxLXN = refldxLXN * 2 (8-218)

— Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macroblock

MVLXN[1]=mvLXN[1]*2 (8-219)

refldxLXN = refldxLXN / 2 (8-220)

— Otherwise, the vertical motion vector component mvLXN[1] and the reference index refldxLXN
remain unchanged.

8.4.1.4 Derivation process for chroma motion vectors

This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are a luma motion vector mvLX and a reference index refldxLX.

Output of this process is a chroma motion vector mvCLX.

A chroma mation vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1 + (4 * SubWidthC) horizontally and 1 + (4 * SubHeightC)
vertically.

NOTE - For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample
units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth
chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For example,
when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 4x8 chroma
samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies
to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies:

If ChromaArrayType is not equal to 1 or the current macroblock is a frame macroblock, the horizontal and vertical
components of the chroma motion vector mvCLX are derived as:

mvCLX[0] =mvLX[0] (8-221)
mvCLX[1]=mvLX[1] (8-222)

Otherwise (ChromaArrayType is equal to 1 and the current macroblock is a field macroblock), only the horizontal
component of the chroma motion vector mvCLX[0] is derived using Equation 8-221. The vertical component of the
chroma motion vector mvCLX[1] is dependent on the parity of the current field or the current macroblock and the
reference picture, which is referred by the reference index refldxLX. mvCLX[1] is derived from mvLX[1]
according to Table 8-10.

164 Rec. ITU-T H.264 (08/2021)

Table 8-10 — Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions
mvCLX[1]
Reference picture (refldxLX) Current field (picture/macroblock)
Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding process for Inter prediction samples
Inputs to this process are:

— amacroblock partition mbPartldx,

— asub-macroblock partition subMbPartldx,

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC
(if available) and partHeightC (if available),

— luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0 chroma motion vectors mvCLO
and mvCL1,

— reference indices refldxL0 and refldxL1,
— prediction list utilization flags, predFlagL0 and predFlagL1,

— variables for weighted prediction logWDc, Woc, Wic, Ooc, 01c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart. of
prediction luma samples, and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays
predPartcy,, predPartc, of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartLO. and predPartLl, be (partWidth)x(partHeight) arrays of predicted luma sample values and when
ChromaArrayType is not equal toO predPartLOch, predPartLlcs,, predPartLOcr, and predPartLlc be
(partWidthC)x(partHeightC) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagLX, RefPicListX, refldxLX, refPicLX, predPartLX, the
following is specified.

When predFlagLX is equal to 1, the following applies:

— The reference picture consisting of an ordered two-dimensional array refPicLX,. of luma samples and when
ChromaArrayType is not equal to 0 two ordered two-dimensional arrays refPicLXcy and refPicLXc, of chroma
samples is derived by invoking the process specified in clause 8.4.2.1 with refldxLX and RefPicListX given as input.

— The array predPartLX. and when ChromaArrayType is not equal to 0 the arrays predPartLXc, and predPartLXc; are
derived by invoking the process specified in clause 8.4.2.2 with the current partition specified by
mbPartldx\subMbPartldx, the motion vectors mvLX, mvCLX (if available), and the reference arrays with refPicLX,,
refPicLXcp (if available), and refPicLX¢; (if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartc of the prediction samples of component
C is derived by invoking the process specified in clause 8.4.2.3 with the current partition specified by mbPartldx and
subMbPartldx, the prediction utilization flags predFlagLO and predFlagL1, the arrays predPartLOc and predPartL1c, and
the variables for weighted prediction logWDc, Woc, Wic, Ooc, O1c given as input.

8.4.2.1 Reference picture selection process
Input to this process is a reference index refldxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLX, and, when
ChromaArrayType is not equal to 0, two two-dimensional arrays of chroma samples refPicLXc, and refPicLXcr.

Rec. ITU-T H.264 (08/2021) 165

Depending on field_pic_flag, the reference picture list RefPicListX (which has been derived as specified in clause 8.2.4)
consists of the following.

If field_pic_flag is equal to 1, each entry of RefPicListX is a reference field or a field of a reference frame.

Otherwise (field_pic_flag is equal to 0), each entry of RefPicListX is a reference frame or a complementary reference
field pair.

For the derivation of the reference picture, the following applies:

If field_pic_flag is equal to 1, the reference field or field of a reference frame RefPicListX[refldxLX] is the output.
The output reference field or field of a reference frame consists of a (PicWidthInSamples.)x(PicHeightInSamples,)
array of luma samples refPicLX,. and, when ChromaArrayType is not equal to0, two
(PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma samples refPicLXc, and refPicL Xc.

Otherwise (field_pic_flag is equal to 0), the following applies:

— If the current macroblock is a frame macroblock, the reference frame or complementary reference field pair
RefPicListX[refldxLX] is the output. The output reference frame or complementary reference field pair consists
of a (PicWidthinSamples.)x(PicHeightinSamples.) array of luma samples refPicLX,. and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesc)x(PicHeightinSamplesc) arrays of chroma
samples refPicLXcp and refPicLXc;.

— Otherwise (the current macroblock is a field macroblock), the following ordered steps are specified:
1. Let refFrame be the reference frame or complementary reference field pair RefPicListX[refldxLX /2].
2. The field of refFrame is selected as follows:

— IfrefldxLX % 2 is equal to 0, the field of refFrame that has the same parity as the current macroblock
is the output.

— Otherwise (refldxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the
current macroblock is the output.

3. The output reference field or field of a reference frame consists of a
(PicWidthInSamples.)x(PicHeightInSamples. / 2) array of luma samples refPicLX. and, when
ChromaArrayType is not equal to 0, two (PicWidthinSamplesc)x(PicHeightInSamplesc / 2) arrays of
chroma samples refPicLXc, and refPicLXc.

Depending on separate_colour_plane_flag, the following applies:

If separate_colour_plane_flag is equal to 0, the reference picture sample arrays refPicLX, refPicLX¢, (if available),
and refPicLXc;, (if available) correspond to decoded sample arrays S, Scp (if available), Sc; (if available) derived in
clause 8.7 for a previously-decoded reference field or reference frame or complementary reference field pair or field
of a reference frame.

Otherwise (separate_colour_plane_flag is equal to 1), the following applies:

— Ifcolour_plane_id is equal to 0, the reference picture sample array refPicL X, corresponds to the decoded sample
array S derived in clause 8.7 for a previously-decoded reference field or reference frame or complementary
reference field pair or field of a reference frame.

— Otherwise, if colour_plane_id is equal to 1, the reference picture sample array refPicLX._ corresponds to the
decoded sample array Scy, derived in clause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

— Otherwise (colour_plane_id is equal to 2), the reference picture sample array refPicLX, corresponds to the
decoded sample array Scr derived in clause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

8.4.2.2 Fractional sample interpolation process

Inputs to this process are:

166

the current partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
the width and height partWidth, partHeight of this partition in luma-sample units,
a luma motion vector mvLX given in quarter-luma-sample units,

when ChromaArrayType is not equal to 0, a chroma motion vector mvCLX with a precision of one-(4*SubWidthC)-
th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically,

Rec. ITU-T H.264 (08/2021)

— the selected reference picture sample arrays refPicLX,, and when ChromaArrayType is not equal to 0, refPicLXc,
and refPicLXcr.

Outputs of this process are:
— a(partWidth)x(partHeight) array predPartL X, of prediction luma sample values,

— when ChromaArrayType is not equal to 0, two (partWidthC)x(partHeightC) arrays predPartLXch, and predPartLXcy
of prediction chroma sample values.

Let (XAr, YAL) be the location given in full-sample units of the upper-left luma sample of the current partition given by
mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xInt,, yInt_) be a luma location given in full-sample units and (xFrac., yFrac,) be an offset given in quarter-sample
units. These variables are used only inside this clause for specifying general fractional-sample locations inside the reference
sample arrays refPicLX,, refPicLXcy, (if available), and refPicLXc;, (if available).

For each luma sample location (0 <= x_ < partWidth, 0 <=y, < partHeight) inside the prediction luma sample array
predPartLX,, the corresponding prediction luma sample value predPartLX.[x., y.] is derived as specified by the
following ordered steps:

1. The variables xInty, yInt,, xFrac,, and yFrac, are derived by:

xInt, = xAL+ (mvLX[0]>>2) +x_ (8-223)
yintL=yAL+(mvLX[1]>>2) +y. (8-224)
XxFracL = mvLX[0] & 3 (8-225)
yFracL =mvLX[1] &3 (8-226)

2. The prediction luma sample value predPartLX.[xi, y.] is derived by invoking the process specified in
clause 8.4.2.2.1 with (xInt, yInt,), (XFrac., yFrac,) and refPicLX. given as input.

When ChromaArrayType is not equal to 0, the following applies.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically.
These variables are used only inside this clause for specifying general fractional-sample locations inside the reference
sample arrays refPicLXcp, and refPicLXc;.

For each chroma sample location (0 <= xc < partWidthC, 0 <= y¢ < partHeightC) inside the prediction chroma sample
arrays predPartLXcp and predPartLXcr, the corresponding prediction chroma sample values predPartLXcp[Xc, yc] and
predPartLXc[Xc, yc] are derived as specified by the following ordered steps:

1. Depending on ChromaArrayType, the variables xIntc, yIntc, XxFracc, and yFracc are derived as follows:

— If ChromaArrayType is equal to 1,

xInte = (XAL / SubWidthC) + (mvCLX[0] >>3) + xc (8-227)
yintc = (yAL/ SubHeightC) + (mvCLX[1]>>3) +yc (8-228)
XFracc = mvCLX[0] &7 (8-229)
yFracc =mvCLX[1] &7 (8-230)

— Otherwise, if ChromaArrayType is equal to 2,

xIntc = (XAr / SubWidthC) + (mvCLX[0] >>3) + xc (8-231)
yintc = (yAL/ SubHeightC) + (mvCLX[1]>>2) +yc (8-232)
XFracc =mvCLX[0] &7 (8-233)
yFracc =(mvCLX[1]&3)<<1 (8-234)

Rec. ITU-T H.264 (08/2021) 167

— Otherwise (ChromaArrayType is equal to 3),

xIntc =xAL + (mvLX[0]>>2) + Xxc (8-235)
yintc =yAL + (mvLX[1]>>2) +yc (8-236)
xFracc =(mvCX[0] & 3) (8-237)
yFracc =(mvCX[1]&3) (8-238)

2. Depending on ChromaArrayType, the following applies:
— If ChromaArrayType is not equal to 3, the following applies:

— The prediction sample value predPartLXcp[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicLXcy, given as input.

— The prediction sample value predPartLXc[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.2 with (xIntc, yiIntc), (XFrace, yFrace) and refPicLXcy given as input.

— Otherwise (ChromaArrayType is equal to 3), the following applies:

— The prediction sample value predPartLXcp[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.1 with (xIntc, yIntc), (XFrace, yFracc) and refPicLXcy, given as input.

— The prediction sample value predPartLXc[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.1 with (xIntc, yIntc), (XFracc, yFracc) and refPicLXc, given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are:

— aluma location in full-sample units (xInt,, yInt_),

— aluma location offset in fractional-sample units (xFrac., yFrac.),
— the luma sample array of the selected reference picture refPicLX,.

Output of this process is a predicted luma sample value predPartLX, [¢, y.].

168 Rec. ITU-T H.264 (08/2021)

cc

F [&] [E

]

]

= [E

]

]

Gla|b|c H‘
d flg
hii|j]|k m‘
niplqjr
M| [s] [N

= B E

]

]

B =] E

]

]

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation

The variable refPicHeightEffective,, which is the height of the effective reference picture luma array, is derived as follows:

— If MbaffFrameFlag is equal to 0 or mb_field decoding_flag is equal to 0, refPicHeightEffective, is set equal to
PicHeightinSamples,.

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1), refPicHeightEffective_ is set
equal to PicHeightInSamples / 2.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLX,_ of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX.[xi, y.]. The locations (xZ., yZ,) for each of the corresponding luma
samples Z, where Zmay be A,B,C,D,E,F,G,H, I, J,K,L,M, N, P, Q, R, S, T, or U, inside the given array refPicLX_

of luma samples are derived as:

xZ = Clip3(0, PicWidthInSamples, — 1, xInt_ + XDZ)
yZ, = Clip3(0, refPicHeightEffective. — 1, yInt_ + yDZ,)

Table 8-11 specifies (xDZ., yDZ,) for different replacements of Z.

Table 8-11 — Differential full-sample luma locations

(8-239)
(8-240)

Z A |B |C |D J|E |F |G |H |I J KL |M|N Q U
xDZ. |0 |1 |0 -2 1-110 2 |3 |-2|-1]0 3
ypZz, |2 |12 |-1|-1/0 |O |O |O [O |O 1 11 |1 |1 1 3

Given the luma samples 'A' to 'U' at full-sample locations (XA, YAL) to (xUr, yU.), the luma samples 'a' to's' at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions are
derived by applying a 6-tap filter with tap values (1, =5, 20, 20, =5, 1). The luma prediction values at quarter sample

Rec. ITU-T H.264 (08/2021)

169

positions are derived by averaging samples at full and half sample positions. The process for each fractional position is
described below.

— The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b; by
applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half sample
positions labelled h are derived by first calculating intermediate values denoted as hy by applying the 6-tap filter to
the nearest integer position samples in the vertical direction:

by=(E-5*F+20*G+20*H-5*%1+]) (8-241)
hi=(A-5*C+20*G+20*M-5*R+T) (8-242)

The final prediction values b and h are derived using

b =Cliply((b1 +16)>>5) (8-243)
h=Cliply((h;+16)>>5) (8-244)

— The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as ji by
applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result:

ju=cc—5*dd+20*hy +20*m; —5*ee + ff, or (8-245)
ji=aa—5*bb+20*b; +20*s; —5*gg+hh (8-246)

where intermediate values denoted as aa, bb, gg, s1 and hh are derived by applying the 6-tap filter horizontally in the
same manner as the derivation of by and intermediate values denoted as cc, dd, ee, m; and ff are derived by applying
the 6-tap filter vertically in the same manner as the derivation of h;. The final prediction value j are derived using

j = Cliply((j1 +512) >> 10) (8-247)

— The final prediction values s and m are derived from s; and m; in the same manner as the derivation of b and h, as
given by

s =Cliply((s1 +16)>>5) (8-248)
m = Cliply((m; +16)>>5) (8-249)

— The samples at quarter sample positions labelled as a, c, d, n, f, i, k, and g are derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using

a=(G+b+1)>>1 (8-250)
c=(H+b+1)>>1 (8-251)
d=(G+h+1)>>1 (8-252)
n=(M+h+1)>>1 (8-253)
f=(b+j+1)>>1 (8-254)
i=(h+j+1)>>1 (8-255)
k=(j+m+1)>>1 (8-256)
q=(j+s+1)>>1 (8-257)

— The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of
the two nearest samples at half sample positions in the diagonal direction using

e=(b+h+1)>>1 (8-258)
g=(b+m+1)>>1 (8-259)
p=(h+s+1)>>1 (8-260)
r=(m+s+1)>>1 (8-261)

The luma location offset in fractional-sample units (xFracy, yFrac,) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX.[., y.]. This
assignment is done according to Table 8-12. The value of predPartLX.[x., y.] is the output.

170 Rec. ITU-T H.264 (08/2021)

Table 8-12 — Assignment of the luma prediction sample predPartL X[x., yi]

xFrac, 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3
yFrac, 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3
predPartLX [x,y.]1| G |d h n a e i p b f j q c g r

8.4.2.2.2 Chroma sample interpolation process

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are:

— achroma location in full-sample units (xlIntc, ylIntc),

— achroma location offset in fractional-sample units (xFracc, yFracc),

— chroma component samples from the selected reference picture refPicLXc.

Output of this process is a predicted chroma sample value predPartLXc[Xc, yc].

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the given

two-dimensional array refPicLXc¢ of chroma samples.

H.264(09) F8-5

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer

position samples A, B, C, and D

The variable refPicHeightEffectivec, which is the height of the effective reference picture chroma array, is derived as

follows:

- If MbaffFrameFlag is equal to 0 or mb_field_decoding_flag is equal to O, refPicHeightEffectivec is set equal to

PicHeightinSamplesc.

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1), refPicHeightEffectivec is set

equal to PicHeightinSamplesc / 2.

The sample coordinates specified in Equations 8-262 through 8-269 are used for generating the predicted chroma sample

value predPartLXc[Xc, yc]

xAc = Clip3(0, PicWidthInSamplesc — 1, xIntc)
XBc = Clip3(0, PicWidthinSamplesc — 1, xIntc + 1)
XCc = Clip3(0, PicWidthInSamplesc — 1, xIntc)
XDc = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1)

yAc = Clip3(0, refPicHeightEffectivec — 1, yintc)
yBc = Clip3(0, refPicHeightEffectivec — 1, ylIntc)
yCc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1)
yDc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1)

Rec. ITU-T H.264 (08/2021)

(8-262)
(8-263)
(8-264)
(8-265)

(8-266)
(8-267)
(8-268)
(8-269)

171

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-262 through 8-269, the
predicted chroma sample value predPartLXc[Xc, yc] is derived as:

predPartLXc[Xc, Yc] = ((8 — xFracc) * (8 — yFracc) * A + xFracc * (8 —yFracc) *B +
(8 — xFracc) * yFracc *C + XFracc * yFracc * D +32)>>6 (8-270)
8.4.2.3 Weighted sample prediction process
Inputs to this process are:
— mbPartldx: the current partition given by the partition index,
— subMbpPartldx: the sub-macroblock partition index,
— predFlagL0 and predFlagL1: prediction list utilization flags,

— predPartLX,: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by LO or L1
depending on predFlagL0 and predFlagL1),

— when ChromaArrayType is not equal to 0, predPartLXc, and predPartLXc,: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr (with LX being replaced by LO or L1
depending on predFlagL0 and predFlagL1),

— variables for weighted prediction logWDc, Woc, Wic, Ooc, Oic With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are:
— predPart.: a (partWidth)x(partHeight) array of prediction luma samples,

— when ChromaArrayType is not equal to O, predPartc,, and predPartc: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr.

For macroblocks or partitions with predFlagL0 equal to 1 in P and SP slices, the following applies:

— If weighted_pred_flag is equal to 0, the default weighted sample prediction process as described in clause 8.4.2.3.1 is
invoked with the same inputs and outputs as the process described in this clause.

— Otherwise (weighted pred_flag is equal to 1), the explicit weighted sample prediction process as described in
clause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this clause.

For macroblocks or partitions with predFlagL0 or predFlagLl equal to 1 in B slices, the following applies:

— If weighted_bipred_idc is equal to O, the default weighted sample prediction process as described in clause 8.4.2.3.1
is invoked with the same inputs and outputs as the process described in this clause.

— Otherwise, if weighted_bipred_idc is equal to 1, the explicit weighted sample prediction process as described in
clause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this clause.

— Otherwise (weighted_bipred_idc is equal to 2), the following applies:

— If predFlagLO is equal to 1 and predFlagLl is equal to 1, the implicit weighted sample prediction process as
described in clause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this clause.

— Otherwise (predFlagLO or predFlagLl are equal to 1 but not both), the default weighted sample prediction
process as described in clause 8.4.2.3.1 is invoked with the same inputs and outputs as the process described in
this clause.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the same as specified in clause 8.4.2.3.

Output of this process are the same as specified in clause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies:

— If the luma sample prediction values predPart.[X, y] are derived, the following applies with C set equal to L, x set
equal to 0..partWidth — 1, and y set equal to O..partHeight — 1.

— Otherwise, if the chroma Cbh component sample prediction values predPartcy[X, y] are derived, the following applies
with C set equal to Cb, x set equal to 0..partWidthC — 1, and y set equal to O..partHeightC — 1.

— Otherwise (the chroma Cr component sample prediction values predPartc[X, y] are derived), the following applies
with C set equal to Cr, x set equal to 0..partWidthC — 1, and y set equal to 0..partHeightC — 1.

172 Rec. ITU-T H.264 (08/2021)

The prediction sample values are derived as follows:

— If predFlagLO is equal to 1 and predFlagL1 is equal to O,
predPartc[X, y] = predPartLOc[X, y] (8-271)

— Otherwise, if predFlagLO0 is equal to 0 and predFlagL1 is equal to 1,
predPartc[X, y]= predPartL1c[X, y] (8-272)

— Otherwise (predFlagL0 and predFlagL1 are equal to 1),
predPartc[X, y] = (predPartLOc[x, y] + predPartL1c[x,y]+ 1) >> 1. (8-273)

8.4.2.3.2 Weighted sample prediction process

Inputs to this process are the same as specified in clause 8.4.2.3.

Outputs of this process are the same as specified in clause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies:

— If the luma sample prediction values predPart [X, y] are derived, the following applies with C set equal to L, x set
equal to 0..partWidth — 1, y set equal to 0..partHeight — 1, and Clip1() being substituted with Cliply().

— Otherwise, if the chroma Cb component sample prediction values predPartc,[X, y] are derived, the following applies
with C set equal to Ch, x set equal to O..partWidthC — 1, y set equal to O..partHeightC — 1, and Clip1() being
substituted with Cliplc().

— Otherwise (the chroma Cr component sample prediction values predPartc [X, y] are derived), the following applies
with C set equal to Cr, x set equal to O..partWidthC — 1, y set equal to 0..partHeightC — 1, and Clip1() being
substituted with Cliplc().

The prediction sample values are derived as follows:

— If the predFlagLO is equal to 1 and predFlagL1 is equal to 0, the final predicted sample values predPartc[x, y] are
derived by

if(logWDc >=1)
predPartc[x, y] = Clip1(((predPartLOc[X, y] * Woc + 2'°"Pc 1) >> logWDc) + 0oc)

else (8-274)
predPartc[x, y] = Clip1(predPartLOc[X, y] * Woc + Ooc)

— Otherwise, if the predFlagL0 is equal to O and predFlagLl is equal to 1, the final predicted sample values
predPartc[x, y] are derived by

if(logWDc >=1)
predPartc[X, y] = Clip1(((predPartL1c[X, y] * wic + 2'°9WPc~1) >> [ogWDc) + 01¢c)

else (8-275)
predPartc[X, y] = Clip1(predPartL1c[X, y] * Wic + 01c)

— Otherwise (both predFlagL0 and predFlagLl are equal to 1), the final predicted sample values predPartc[X, y] are
derived by

predPartc[X, y] = Clip1(((predPartLOc[X, y] * woc + predPartL1c[X, y] * Wic + 2'°9Wbc) >>
(logWDc + 1))+ ((0oc+01c+1)>>1)) (8-276)
8.4.3 Derivation process for prediction weights
Inputs to this process are:
— the reference indices refldxL0 and refldxL1,
— the prediction utilization flags predFlagL0 and predFlagL1.

Outputs of this process are variables for weighted prediction logWDc, Woc, Wic, Ooc, 01c With C being replaced by L and,
when ChromaArrayType is not equal to 0, Cb and Cr.

The variables implicitModeFlag and explicitModeFlag are derived as follows:

Rec. ITU-T H.264 (08/2021) 173

If weighted_bipred_idc is equal to 2, (slice_type % 5) is equal to 1, predFlagLO0 is equal to 1, and predFlagL1 is equal
to 1, implicitModeFlag is set equal to 1 and explicitModeFlag is set equal to 0.

Otherwise, if weighted_bipred_idc is equal to 1, (slice_type % 5) is equal to 1, and predFlagL0 + predFlagL1 is equal
to 1 or 2, implicitModeFlag is set equal to 0 and explicitModeFlag is set equal to 1.

Otherwise, if weighted pred_flag is equal to 1, (slice_type % 5) is equal to 0 or 3, and predFlagLO is equal to 1,
implicitModeFlag is set equal to 0 and explicitModeFlag is set equal to 1.

Otherwise, implicitModeFlag is set equal to 0 and explicitModeFlag is set equal to 0.

For C being replaced by L and, when ChromaArrayType is not equal to 0, Cb and Cr, the variables logWDc, Woc, Wic,
0Ogc, O1c are derived as follows:

If implicitModeFlag is equal to 1, implicit mode weighted prediction is used as follows:

logWDc =5 (8-277)
0oc=0 (8-278)
01c=0 (8-279)

and woc and wic are derived as specified in the following ordered steps:

1. The variables currPicOrField, pic0O, and picl are derived as follows:
— Iffield_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies:

a. currPicOrField is the field of the current picture CurrPic that has the same parity as the current
macroblock.
b. The variable pic0 is derived as follows:

— If refldxL0 % 2 is equal to O, picO is the field of RefPicListO[refldxL0 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicListO[refldxL0 /2] that
has the opposite parity of the current macroblock.
c. The variable picl is derived as follows:

— If refldxL1 % 2 is equal to O, picl is the field of RefPicList1[refldxL1 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL1 % 2 is not equal to 0), picl is the field of RefPicList1[refldxL1 /2] that
has the opposite parity of the current macroblock.

— Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField
is the current picture CurrPic, picl is RefPicListl[refldxL1], and picO is RefPicListO[refldxLO].

2. The variables woc and wic are derived as follows:

— If DiffPicOrderCnt(pic1, picO) is equal to O or one or both of picl and picO is marked as "used for
long-term reference” or (DistScaleFactor >> 2) < —64 or (DistScaleFactor >> 2) > 128, woc and wic are

derived as:
Woc = 32 (8-280)
Wic = 32 (8-281)

— Otherwise, the variables tb, td, tx, and DistScaleFactor are derived from the values of currPicOrField, picO,
and picl using Equations 8-201, 8-202, 8-197, and 8-198, respectively, and the weights woc and wic are

derived as
Woc = 64 — (DistScaleFactor >> 2) (8-282)
wic = DistScaleFactor >> 2 (8-283)

Otherwise, if explicitModeFlag is equal to 1, explicit mode weighted prediction is used as specified by the following
ordered steps:

174 Rec. ITU-T H.264 (08/2021)

1. The variables refldxLOWP and refldxL1WP are derived as follows:

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refldxLOWP = refldxL0 >> 1 (8-284)
refldxLIWP = refldxL1 >> 1 (8-285)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

refldxLOWP = refldxL0 (8-286)
refldxL1IWP = refldxL1 (8-287)

2. The variables logWDc, Woc, Wic, Ooc, and oxc are derived as follows:

— IfCisequal to L for luma samples

logWDc = luma_log2_weight_denom (8-288)
Woc = luma_weight_IO[refldxLOWP] (8-289)
wic = luma_weight_I1[refldxL1WP] (8-290)
0oc = luma_offset_I0[refldxLOWP] * (1 << (BitDepthy —8)) (8-291)
01c = luma_offset_I1[refldxLIWP] * (1 << (BitDepthy —8)) (8-292)

— Otherwise (C is equal to Cb or Cr for chroma samples, with iCbCr = 0 for Ch, iCbCr =1 for Cr),

logWD¢ = chroma_log2_weight_denom (8-293)
Woc = chroma_weight_I0[refldxLOWP][iCbCr] (8-294)
wic = chroma_weight_I1[refldxL1WP][iCbCr] (8-295)
0oc = chroma_offset_I0[refldxLOWP][iCbCr] * (1 << (BitDepthc — 8)) (8-296)
01c = chroma_offset_I1] refldxL1WP][iCbCr] * (1 << (BitDepthc —8)) (8-297)

— Otherwise (implicitModeFlag is equal to 0 and explicitModeFlag is equal to 0), the variables logWDc, Woc, Wic, Ooc,
01c are not used in the reconstruction process for the current macroblock.

When explicitModeFlag is equal to 1 and predFlagL0 and predFlagL1 are equal to 1, the following constraint shall be
obeyed for C equal to L and, when ChromaArrayType is not equal to 0, Cb and Cr:

—128 <= wpc + Wic <= ((logWDc == 7)?127:128) (8-298)

NOTE — For implicitModeFlag equal to 1, weights woc and wic are each guaranteed to be in the range of —64..128 and the constraint
expressed in Equation 8-298, although not explicitly imposed, will always be met. For explicitModeFlag equal to 1 with logWDc
equal to 7, when one of the two weights woc or wic is inferred to be equal to 128 (as a consequence of luma_weight_l0_flag,
luma_weight_I1_flag, chroma_weight_I0_flag, or chroma_weight_I1_flag equal to 0), the other weight (wic or woc) must have a
negative value in order for the constraint expressed in Equation 8-298 to hold (and therefore the other flag luma_weight_10_flag,
luma_weight_I1_flag, chroma_weight_I0_flag, or chroma_weight_I1_flag must be equal to 1).

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral6x16DCLevel (if available), Intral6x16ACLevel (if available), Cbintral6x16DCLevel (if
available), Cbintral6x16ACLevel (if available), Crintral6x16DCLevel (if available), Crintral6x16ACLevel (if available),
LumaLevel4x4 (if available), Lumalevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel (if available),
CbLevel4x4 (if available), CrLevel4x4 (if available), CbLevel8x8 (if available), CrLevel8x8 (if available), and available
Inter or Intra prediction sample arrays for the current macroblock for the applicable components pred,, predcy, or predc;.

NOTE 1 — When decoding a macroblock in Intra_4x4 (or Intra_8x8) macroblock prediction mode, the luma component of the
macroblock prediction array may not be complete, since for each 4x4 (or 8x8) luma block, the Intra_4x4 (or Intra_8x8) prediction

Rec. ITU-T H.264 (08/2021) 175

process for luma samples as specified in clause 8.3.1 (or 8.3.2) and the process specified in this clause are iterated. When
ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock prediction array may not be complete for the same
reason.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
components S't, S'cy, Or S'cr.

NOTE 2 — When decoding a macroblock in Intra_4x4 (or Intra_8x8) macroblock prediction mode, the luma component of the
macroblock constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 (or 8x8) luma
block, the Intra_4x4 (or Intra_8x8) prediction process for luma samples as specified in clause 8.3.1 (or 8.3.2) and the process
specified in this clause are iterated. When ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock constructed
sample arrays prior to the deblocking filter process may not be complete for the same reason.

This clause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P_Skip or B_Skip, all values of Lumalevel4x4, Lumalevel8x8, CbLevel4x4,
CbLevel8x8, CrLevel4x4, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks
This specification applies when transform_size_8x8_flag is equal to 0.

When the current macroblock prediction mode is not equal to Intra_16x16, the variable Lumalevel4x4 contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4Blkldx = 0..15, the following ordered steps
are specified:

1. Theinverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked
with Lumalevel4x4[lumadx4BIkldx] as the input and the two-dimensional array ¢ as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with c as
the input and r as the output.

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_4x4, and
Intradx4PredMode[lumadx4BIkldx] is equal to 0 or 1, the intra residual transform-bypass decoding process as
specified in clause 8.5.15 is invoked with nW set equal to 4, nH set equal to 4, horPredFlag set equal to
Intradx4PredMode[lumadx4BIkldx], and the 4x4 array r as the inputs, and the output is a modified version of the
4x4 array r.

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4BIkldx as the input
and the output being assigned to (xO, yO).

5. The 4x4 array u with elements ujj for i, j = 0..3 is derived as:
uUij = Cliply(pred [XO +],yO +i] +r1ij) (8-299)
When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of ujj as
computed by Equation 8-299 that is not equal to pred.[xO +j, yO +i] + rjj.

6. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u and
lumadx4Blkldx as the inputs.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction mode

When the current macroblock prediction mode is equal to Intra_16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds in
the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with Intral6x16DCLevel as the input and the two-dimensional array ¢ as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
as specified in clause 8.5.10 is invoked with BitDepthy, QP'y, and ¢ as the input and dcY as the output.

2. The 16x16 array rMb is derived by processing the 4x4 luma blocks indexed by lumadx4BIkldx = 0..15, and for
each 4x4 luma block, the following ordered steps are specified:

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumaList is the corresponding
value from the array dcY. Figure 8-6 shows the assignment of the indices of the array dcY to the

176 Rec. ITU-T H.264 (08/2021)

5.
8.5.3

lumadx4Blkldx. The two numbers in the small squares refer to indices i and j in dcY'j, and the numbers in
large squares refer to luma4x4BIlkldx.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15
H.264(09)_F8-6

Figure 8-6 — Assignment of the indices of dcY to luma4x4BIkldx

The elements in lumaList with index k = 1..15 are specified as:

lumalList[k] = Intral6x16ACLevel[lumadx4Blkldx][k — 1] (8-300)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with lumaL.ist as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with ¢
as the input and r as the output.

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the macroblock
is derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4BIkldx as
the input and the output being assigned to (xO, yO).

e. The elements rMbJ[X, y] of the 16x16 array rMb with x = x0O..xO + 3 and y = yO..yO + 3 are derived by
rMb[xO +j, yO +i] =r;; (8-301)

When TransformBypassModeFlag is equal to 1 and Intral6x16PredMode is equal to 0 or 1, the intra residual
transform-bypass decoding process as specified in clause 8.5.15 is invoked with nW set equal to 16, nH set equal
to 16, horPredFlag set equal to Intral6x16PredMode, and the 16x16 array rMb as the inputs, and the output is a
modified version of the 16x16 array rMb.

The 16x16 array u with elements uj; for i, j = 0..15 is derived as

uij = Cliplv(predi[j, i]+ rMb[],i]) (8-302)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uj; as
computed by Equation 8-302 that is not equal to pred.[j, i] + rMb[j,i].

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u as the input.

Specification of transform decoding process for 8x8 luma residual blocks

This specification applies when transform_size 8x8_flag is equal to 1.

The variable LumaLevel8x8[luma8x8BIkldx] with luma8x8Blkldx =0..3 contains the levels for the luma transform
coefficients for the luma 8x8 block with index luma8x8BlkIdx.

For an 8x8 luma block indexed by luma8x8BIkldx = 0..3, the following ordered steps are specified:

1.

The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in clause 8.5.7 is invoked
with LumalLevel8x8[luma8x8BIkldx] as the input and the two-dimensional array ¢ as the output.

The scaling and transformation process for residual 8x8 blocks as specified in clause 8.5.13 is invoked with ¢ as
the input and r as the output.

Rec. ITU-T H.264 (08/2021) 177

8.5.4

When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_8x8, and
Intra8x8PredMode[luma8x8BIkldx] is equal to 0 or 1, the intra residual transform-bypass decoding process as
specified in clause 8.5.15 is invoked with nW set equal to 8, nH set equal to 8, horPredFlag set equal to
Intra8x8PredMode[luma8x8BIkldx], and the 8x8 array r as the inputs, and the output is a modified version of the
8x8 array r.

The position of the upper-left sample of an 8x8 luma block with index luma8x8BIkldx inside the macroblock is
derived by invoking the inverse 8x8 luma block scanning process in clause 6.4.5 with luma8x8BIkldx as the input
and the output being assigned to (xO, yO).

The 8x8 array u with elements uj; for i, j = 0..7 is derived as:
uij = Cliply(pred [XO +j, yO +i] +rjj) (8-303)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uj; as
computed by Equation 8-303 that is not equal to pred, [XO +j, yO +i] + rij.

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u and
luma8x8Blkldx as the inputs.

Specification of transform decoding process for chroma samples

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is not equal to 0.

Depending on ChromaArrayType, the following applies:

— If ChromaArrayType is equal to 3, the transform decoding process for chroma samples with ChromaArrayType equal
to 3 as specified in clause 8.5.5 is invoked.

— Otherwise (ChromaArrayType is not equal to 3), the following text specifies the transform decoding process for
chroma samples.

For each chroma component, the variables ChromaDCLevel[iCbCr] and ChromaACLevel[iCbCr], with iCbCr set equal
to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform coefficients.

Let the variable numChroma4x4BIks be set equal to (MbWidthC / 4) * (MbHeightC / 4).

For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1.

178

The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed
by iCbCr of the macroblock are decoded as specified in the following ordered steps:

a. Depending on the variable ChromaArrayType, the following applies:

— If ChromaArrayType is equal to 1, the 2x2 array c is derived using the inverse raster scanning process
applied to ChromaDCLevel as follows:

_ | ChromaDClLevel[iCbCr][0] ChromaDCLevel[iCbCr][1] (8-304)
" | ChromaDCLevel[iCbCr][2] ChromaDCLevel[iCbCr][3]

— Otherwise (ChromaArrayType is equal to 2), the 2x4 array c is derived using the inverse raster
scanning process applied to ChromaDCLevel as follows:

ChromaDCLevel[iCbCr][0] ChromaDCLevel[iCbCr][2]
oo ChromaDCLevel[iCbCr][1] ChromaDCLevel[iCbhCr][5] (8:305)
B ChromaDCLevel[iCbCr][3] ChromaDCLevel[iCbCr][6]

ChromaDCLevel[iCbCr][4] ChromaDCLevel[iCbCr][7]

b. The scaling and transformation process for chroma DC transform coefficients as specified in clause 8.5.11 is
invoked with c as the input and dcC as the output.

The (MbWidthC)x(MbHeightC) array rMb is derived by processing the 4x4 chroma blocks indexed by
chroma4x4Blkldx = 0..numChroma4x4Blks — 1 of the component indexed by iCbCr, and for each 4x4 chroma
block, the following ordered steps are specified:

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC to

Rec. ITU-T H.264 (08/2021)

the chroma4x4Blkldx. The two numbers in the small squares refer to indices i and j in dcCj;, and the numbers
in large squares refer to chroma4x4BIkldx.

B
0 1
10] 11
2 3
00| 01 20 21
0 1 4 5
10] 11 30 31
2 3 6 7
H.264(09)_F8-7
a b

Figure 8-7 — Assignment of the indices of dcC to chroma4x4Blkldx:
(a) ChromaArrayType equal to 1, (b) ChromaArrayType equal to 2

The elements in chromaL.ist with index k = 1..15 are specified as:

chromaList[k] = ChromaACLevel[chroma4x4BIkldx][k— 1] (8-306)
b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with chromalL.ist as the input and the two-dimensional array ¢ as the output.

¢. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
¢ as the input and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the current
macroblock is derived by invoking the inverse 4x4 chroma block scanning process as specified in clause 6.4.7
with chroma4x4Blkldx as the input and the output being assigned to (xO, yO).

e. The elements rMb[x,y] of the (MbWidthC)x(MbHeightC) array rMb with x =x0.xO+3 and
y =yO0..yO + 3 are derived by:

Mb[XO +j,yO +i]=r; (8-307)

When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_4x4, Intra_8x8,
or Intra_16x16, and intra_chroma_pred_mode is equal to 1 or 2, the intra residual transform-bypass decoding
process as specified in clause 8.5.15 is invoked with nW set equal to MbWidthC, nH set equal to MbHeightC,
horPredFlag set equal to (2 — intra_chroma_pred_mode), and the (MbWidthC)x(MbHeightC) array rMb as the
inputs, and the output is a modified version of the (MbWidthC)x(MbHeightC) array rMb.

The (MbWidthC)x(MbHeightC) array u with elements u;; for i = 0..MbHeightC — 1 and j = 0..MbWidthC — 1 is
derived as:

uij = Cliplc(predc[j,i] + rMb[j],i]) (8-308)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of ujj as
computed by Equation 8-308 that is not equal to predc[j, i]+ rMb[j,i].

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u as the input.

Rec. ITU-T H.264 (08/2021) 179

8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal to 3
This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is equal to 3.
Depending on the macroblock prediction mode and transform_size_8x8 flag, the following applies:

— If the macroblock prediction mode is equal to Intra_16x16, the transform decoding process for Ch or Cr residual
blocks shall be identical to the process described in clause 8.5.2 when substituting luma with Cb or Cr, substituting
Intral6x16DCLevel with Cblntral6x16DCLevel or Crintral6x16DCLevel, substituting Intral6x16ACLevel with
Cbintral6x16ACLevel or Crintral6x16ACLevel, and substituting pred. with predc, or predcr, substituting
lumadx4Blkldx with ch4x4BIkldx or cr4x4Blkldx, substituting lumaL.ist with CbList or CrList, substituting BitDepthy
with BitDepthc, substituting QP’y with QP’c, and substituting Cliply with Cliplc. During the scaling of 4x4 block
transform coefficient levels that is specified in clause 8.5.12.1, which is invoked as part of the process specified in
clause 8.5.2, the input 4x4 array c is treated as relating to a luma residual block coded using an Intra_16x16 macroblock
prediction mode.

— Otherwise, if transform_size 8x8 flag is equal to 1, the transform decoding process for 8x8 Ch or 8x8 Cr residual
blocks shall be identical to the process described in clause 8.5.3 when substituting luma with Cb or Cr, substituting
LumalLevel8x8 with ChLevel8x8 or CrLevel8x8, substituting pred. with predcs, or predc;, substituting luma8x8BIkldx
with cbh8x8BIlkldx or cr8x8BIkldx, and substituting Cliply with Cliplc.

— Otherwise (the macroblock prediction mode is not equal to Intra_16x16 and transform_size 8x8 flag is equal to 0),
the transform decoding process for 4x4 Cb or 4x4 Cr residual blocks shall be identical to the process described in
clause 8.5.1 when substituting luma with Cb or Cr, substituting LumaLevel4x4 with CbLevel4x4 or CrLeveldx4,
substituting pred. with predcy or preder, substituting lumadx4BIkldx with cbh4x4Blkldx or cr4x4Blkldx, and
substituting Cliply with Cliplc. During the scaling of 4x4 block transform coefficient levels that is specified in
clause 8.5.12.1, which is invoked as part of the process specified in clause 8.5.1, the input 4x4 array c is treated as
relating to a luma residual block not coded using an Intra_16x16 macroblock prediction mode.

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists
Input to this process is a list of 16 values.

Output of this process is a variable ¢ containing a two-dimensional array of 4x4 values. In the case of transform coefficients,
these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the inverse scanning
process to a scaling list, the output variable ¢ contains a two-dimensional array representing a 4x4 scaling matrix.

When this clause is invoked with a list of transform coefficient levels as the input, the sequence of transform coefficient
levels is mapped to the transform coefficient level positions. Table 8-13 specifies the two mappings: inverse zig-zag scan
and inverse field scan. The inverse zig-zag scan is used for transform coefficients in frame macroblocks and the inverse
field scan is used for transform coefficients in field macroblocks.

When this clause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the positions
in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-8 illustrates the scans.

L
VLYY
Y

Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)

Table 8-13 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-dimensional
array c.

180 Rec. ITU-T H.264 (08/2021)

Table 8-13 — Specification of mapping of idx to cjj for zig-zag and field scan

idx o112 |34]|5]6|7[8]9]|10]11]12]13|14]15

zig-zag | Coo | Co1 | C10 | Coo | C11 | Co2 | Co3 | C12 | Co1 | C30 | €31 | Co2 | C13 | C23 | C32 | Ca3

field | Coo | C10 | Cor | C20 | C30 | Ca1 | Co1 | C31 | Co2 | Ci2 | Co2 | €32 | Co3 | C13 | Co3 | Ca3

8.5.7 Inverse scanning process for 8x8 transform coefficients and scaling lists
Input to this process is a list of 64 values.

Output of this process is a variable ¢ containing a two-dimensional array of 8x8 values. In the case of transform coefficients,
these 8x8 values represent levels assigned to locations in the transform block. In the case of applying the inverse scanning
process to a scaling list, the output variable ¢ contains a two-dimensional array representing an 8x8 scaling matrix.

When this clause is invoked with a list of transform coefficient levels as the input, the sequence of transform coefficient
levels is mapped to the transform coefficient level positions. Table 8-14 specifies the two mappings: inverse 8x8 zig-zag
scan and inverse 8x8 field scan. The inverse 8x8 zig-zag scan is used for transform coefficient levels in frame macroblocks
and the inverse 8x8 field scan is used for transform coefficient levels in field macroblocks.

When this clause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the positions
in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-9 illustrates the scans.

00— 1 5— 6 14 — 15 27 —» 28 0 3 8 15 22 30 38 52
/ /' / /' / /‘ / ' /‘i / / / /7 v
2 29 1 4 14 21 29 37 45 53

¢/' / /‘ / /' / /W ' / /‘ /‘ /‘ /‘¢
3 41 2 7 16 23 31 39 46 58
v / ./ / ./ " / / / / / / !
11 40 44 5 9 20 28 36 44 51 59
L/’ / / / /' / /W ! / !
19 23 6 13 24 32 40 47 54 60
/ a / /' / /' / I
22 33 51 55 10 17 25 33 41 48 55 61
i/' v /' / /' e /'l N N N N YT
34 37 56 59 11 18 26 34 42 49 56 62
/ / / /' / a / A Y Y A Y A
35 — 36 48 —» 49 57 — 58 62 — 63 12 19 27 35 43 50 57 63
a b e

Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)

Table 8-14 provides the mapping from the index idx of the input list of 64 elements to indices i and j of the two-dimensional
array c.

Rec. ITU-T H.264 (08/2021) 181

Table 8-14 — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx o|]1,2 |34]|5|6|7]|8]9|10|11]12]13][14]15

zig-zag Coo | Co1 | C10 | C20 | C11 | Co2 | Co3 | C12 | C21 | C30 | Ca0 | C31 | C22 | C13 | Co4 | Cos

field Coo | C10 | €20 | Cox | C11 | Ca0 | Cao | Co1 | Co2 | C31 | Cso | Ceo | C70 | Car | Ci2 | Co3

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 16 |17 |18 |19 |20 | 21 |22 |23 |24 | 25|26 |27 2829 |30 |31

zig-zag | Cia | Co3 | C32 | Ca1 | Cso | Ceo | Cs1 | Ca2 | C33 | C24 | Ci5 | Cos | Co7 | Ci6 | Co5 | C3s

field C22 | Cs1 | Ce1 | C71 | C32 | C13 | Cog | C23 | Ca2 | Cs2 | Ce2 | C72 | C33 | C14 | Cos5 | C24

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 32 133 34 35|36 |37 |38 |39 |40 |41 |42 |43 |44 |45 |46 | 47

Zig-zag | Ca3 | Csp | Ce1 | Cro | C71 | Cp2 | Cs3 | Caq | C35 | Co6 | Ca7 | Co7 | C36 | Cas | Csa | Ce3

field C43 | Cs3 | Ce3 | C73 | C34 | Ci5 | Cos | C25 | Caq | Cs4 | Co4 | C74 | C35 | C16 | Co6 | Ca5

Table 8-14 (concluded) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |56 |57 |58 |59 |60]|61]|62)63

Zig-zag | Cr2 | C73 | Coa | Cs5 | Cap | Ca7 | Caz | Csg | Ces | C7a | C75 | Ces | C57 | Co7 | C76 | C77

field Cs5 | Ce5 | C75 | C36 | Co7 | Ci7 | Cap | Cs6 | Cee | C76 | C27 | C37 | C47 | Cs7 | Ce7 | C77

8.5.8 Derivation process for chroma quantization parameters

Outputs of this process are:
— QPc: the chroma quantization parameter for each chroma component Cb and Cr,

— QSc: the additional chroma quantization parameter for each chroma component Cb and Cr required for decoding SP
and Sl slices (if applicable).

NOTE 1 — QP quantization parameter values QPy and QSy are always in the range of —QpBdOffsety to 51, inclusive. QP
quantization parameter values QPc and QSc are always in the range of —QpBdOffsetc to 39, inclusive.

The value of QPc for a chroma component is determined from the current value of QPy and the value of
chroma_gp_index_offset (for Cb) or second_chroma_qp_index_offset (for Cr).

NOTE 2 — The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPy. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the
value of QPy.

The value of QP for each chroma component is determined as specified in Table 8-15 based on the index denoted as qP.

The variable gPostset for each chroma component is derived as follows:
— If the chroma component is the Cb component, qPorrst is specified as:

qPorset = chroma_qgp_index_offset (8-309)

— Otherwise (the chroma component is the Cr component), qPorsst is specified as:

qPorrset = sSecond_chroma_qp_index_offset (8-310)

The value of qP, for each chroma component is derived as:

gP: = Clip3(—QpBdOffsetc, 51, QPy + qPoffset) (8-311)

182 Rec. ITU-T H.264 (08/2021)

The value of QP’c for the chroma components is derived as:

QP’c = QPc + QpBdOffsetc (8-312)
Table 8-15 — Specification of QPc as a function of qP:
gPr | <30 |3 |3 |3 |3 |3 |3 |3 |3 |3 |3 |4 |4 |4 |4 |4 |4 |4 |4 |4 |4 |55
0|12 |3 |4 |5]|6 |7 |8][9]0 1 |2 |3 |4 |5 |6 |7 8]9]0]1
QP |=gP |2 |3 |3 {3 |3 |3 (3 |3 |3 (3|3 |33 |3 (33 |3 |33]|]3 |3]3
c I 9]0 |1 |2 |2 |3 |4 |4 |5 |5 |6 |6 |7 |7 |7 (8 81819191919

When the current slice is an SP or Sl slice, QSc is derived using the above process, substituting QPy with QSy and QPc
with QSc.

8.5.9 Derivation process for scaling functions

Outputs of this process are:
— LevelScale4x4: the scaling factor for 4x4 block transform luma or chroma coefficient levels,
— LevelScale8x8: the scaling factor for 8x8 block transform luma or chroma coefficient levels.

The variable mblsinterFlag is derived as follows:
— If the current macroblock is coded using Inter macroblock prediction modes, mblsinterFlag is set equal to 1.

— Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mblsinterFlag is set equal
to 0.

The variable iYCbCr derived as follows:
— If separate_colour_plane_flag is equal to 1, iYCbCr is set equal to colour_plane_id.
— Otherwise (separate_colour_plane_flag is equal to 0), the following applies:

— Ifthe scaling function LevelScale4x4 or LevelScale8x8 is derived for a luma residual block, iYCbCr is set equal
to 0.

— Otherwise, if the scaling function LevelScale4x4 or LevelScale8x8 is derived for a chroma residual block and
the chroma component is equal to Cb, iYCbCr is set equal to 1.

— Otherwise (the scaling function LevelScale4x4 or LevelScale8x8 is derived for a chroma residual block and the
chroma component is equal to Cr), iYCbCr is set equal to 2.

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked with
ScalingList4x4[iYCbCr + ((mblsinterFlag == 1) ?3:0)] as the input and the output is assigned to the 4x4 matrix
weightScale4x4.

LevelScaledx4(m, i, j) is specified by:

LevelScaledx4(m, i, j) = weightScale4x4(i, j) * normAdjustdx4(m, i, j) (8-313)
where
V., Tor(i%?2,j%2)equalto(0,0),
normAdjustdx4(m,i, j)=4v,, for(i%2, j%2)equalto (1,1), (8-314)
v otherwise;

m2

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

(10 16 13]
11 18 14
13 20 16
Vo4 23 18 (8-315)
16 25 20

18 29 23

Rec. ITU-T H.264 (08/2021) 183

The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in clause 8.5.7 is invoked with
ScalingList8x8[2 * iYCbCr + mblsinterFlag] as the input and the output is assigned to the 8x8 matrix weightScale8x8.

LevelScale8x8(m, i, j) is specified by:
LevelScale8x8(m, i, j) = weightScale8x8(i, j) * normAdjust8x8(m, i, j) (8-316)
where

V., for(i%4,j% 4)equalto(0,0),

v, Tfor(i%2,j% 2)equalto(1,1),

i Y for (%4, j% 4) equal to (2,2),

normAdjust8x8(m,i, j)=1 ™ 8-317
I X(IJ) for (i% 4, j% 2) equal to (0,1) or (i % 2, j % 4) equal to (1,0), ()

ma ToOr(i%4,j% 4)equal to (0,2) or (i % 4, j% 4) equal to (2,0),

ms Otherwise;

ml

Vm3

\Y
\

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

(20 18 32 19 25 24]
22 19 35 21 28 26
26 23 42 24 33 31
V=128 25 45 26 35 33| (8-318)
32 28 51 30 40 38

36 32 58 34 46 43

8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type
Inputs to this process are:

— the variables bitDepth and gP,

— transform coefficient level values for DC transform coefficients of Intra_16x16 macroblocks as a 4x4 array ¢ with
elements cjj, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with
elements dcYi.

Depending on the value of TransformBypassModeFlag, the following applies:

— If TransformBypassModeFlag is equal to 1, the output dcY is derived as:
decY; = cij with i,j=0..3 (8-319)

— Otherwise (TransformBypassModeFlag is equal to 0), the following text of this process specifies the output.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

1 1 1 1| |cp Cy Cp Cizl (1 1 1 1
fo 1 1 -1 -1 L Co Cu C Ci| 1 1 -1 —1' (8-320)
1 -1 -1 1] |Ccy Cpy Cp Cpl |l -1 -1 1
1 -1 1 -1] |cgp Cy Czp Cy| [T -1 1 -1
The bitstream shall not contain data that result in any element f;; of f with i, j = 0..3 that exceeds the range of integer values
from —2(7 + bitDepth) tq (7 +bitdepth) — 1 “jnclusive.
After the inverse transform, the scaling is performed as follows:

— If gP is greater than or equal to 36, the scaled result is derived as:

deY; = (fij * LevelScale4x4(qgP %6,0,0))<< (qP/6—6), with i,j=0..3 (8-321)

184 Rec. ITU-T H.264 (08/2021)

— Otherwise (gP is less than 36), the scaled result is derived as:
deY;; = (fij * LevelScale4x4(gP %6,0,0) + (1<<(5—-qP/6)))>>(6—qP/6), with i,j=0..3 (8-322)

The bitstream shall not contain data that result in any element dcY;; of dcY with i, j = 0..3 that exceeds the range of integer
values from —2(7 * bitDepth) 4 (7 +bitDepth) — 1 jnclusive.

NOTE 1 — When entropy_coding_mode_flag is equal to 0 and gP is less than 10 and profile_idc is equal to 66, 77, or 88, the range
of values that can be represented for the elements cij of ¢ is not sufficient to represent the full range of values of the elements dcYj;
of dcY that could be necessary to form a close approximation of the content of any possible source picture by use of the Intra_16x16
macroblock type.

NOTE 2 — Since the range limit imposed on the elements dcY'j of dcY is imposed after the right shift in Equation 8-322, a larger
range of values must be supported in the decoder prior to the right shift.

8.5.11 Scaling and transformation process for chroma DC transform coefficients
This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma component
of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array ¢ with elements cij, where i and j form a two-dimensional
frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcC;;.
The variables bitDepth and gP are set equal to BitDepthc and QP’c, respectively.

Depending on the value of TransformBypassModeFlag, the following applies:

— If TransformBypassModeFlag is equal to 1, the output dcC is derived as:
dcCjj = ¢jj with i=0..(MbWidthC/4)—1andj=0..(MbHeightC/4) - 1. (8-323)

— Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The transformation process for chroma DC transform coefficients as specified in clause 8.5.11.1 is invoked
with bitDepth and c as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array f of
chroma DC values with elements fi;.

2. The scaling process for chroma DC transform coefficients as specified in clause 8.5.11.2 is invoked with
bitDepth, gP, and f as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array dcC
of scaled chroma DC values with elements dcCj.

8.5.11.1 Transformation process for chroma DC transform coefficients

Inputs of this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array ¢ with elements cjj, where i and j form a two-
dimensional frequency index.

Outputs of this process are the DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fj;.
Depending on the variable ChromaArrayType, the inverse transform is specified as follows:

— If ChromaArrayType is equal to 1, the inverse transform for the 2x2 chroma DC transform coefficients is specified

as:
£ 1 1 | Coo Co | 1 1 (8-324)
1 -1 |cp cy| |1 -
— Otherwise, (ChromaArrayType is equal to 2), the inverse transform for the 2x4 chroma DC transform coefficients is
specified as:

1 1 1 1] [ce Co

c|t 111 e oy *[1 1} (6:325)
1 -1 -1 1| |cyp Cy

1 -1 1 -1] |cy Cy

8.5.11.2 Scaling process for chroma DC transform coefficients
Inputs of this process are:

Rec. ITU-T H.264 (08/2021) 185

— the variables bitDepth and gP,
— DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fj;.

Outputs of this process are scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCj.

The bitstream shall not contain data that result in any element f;; of f with i, j = 0..3 that exceeds the range of integer values
from —2(7 *+ bitDepth) g (7 +bitDepth) — 1 inclusive.

Scaling is performed depending on the variable ChromaArrayType as follows:

— If ChromaArrayType is equal to 1, the scaled result is derived as:

dcC; = ((f; * LevelScale4x4(qP %6,0,0)) <<(qP/6))>>5, with i,j=0,1 (8-326)

— Otherwise (ChromaArrayType is equal to 2), the following ordered steps are specified:
1. The variable gPpc is derived as:

dPoc=qP +3 (8-327)

2. Depending on the value of gPpc, the following applies:
— If gPpc is greater than or equal to 36, the scaled result is derived as:

dcCy = (f; * LevelScaledx4 (qPpc %6,0,0)) << (qPpc /6—6), Withi=0.3,j=0,1 (8-328)
— Otherwise (qPpc is less than 36), the scaled result is derived as:

deC; = (f; *LevelScaledxd(qPy %6,0,0)+ 2") >> (6-qP, /6), with i=0.3,j=0,1
(8-329)

The bitstream shall not contain data that result in any element dcCj; of dcC with i, j = 0..3 that exceeds the range of integer
values from —2(7 * bitbepth) 4 (7 +bitDepth) — 7 “inclusive.

NOTE 1 — When entropy_coding_mode_flag is equal to 0 and qP is less than 4 and profile_idc is equal to 66, 77, or 88, the range
of values that can be represented for the elements ¢;jj of ¢ in clause 8.5.11.1 may not be sufficient to represent the full range of values
of the elements dcCj; of dcC that could be necessary to form a close approximation of the content of any possible source picture.

NOTE 2 — Since the range limit imposed on the elements dcC;; of dcC is imposed after the right shift in Equation 8-326 or 8-329,
a larger range of values must be supported in the decoder prior to the right shift.

8.5.12 Scaling and transformation process for residual 4x4 blocks

Input to this process is a 4x4 array ¢ with elements c;; which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements r;.

The variable bitDepth is derived as follows:

— Ifthe input array c relates to a luma residual block, bitDepth is set equal to BitDepthy.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthc.

The variable sMbFlag is derived as follows:

— If mb_typeis equal to Sl or the macroblock prediction mode is equal to Inter in an SP slice, sSMbFlag is set equal to 1,

— Otherwise (mb_type not equal to SI and the macroblock prediction mode is not equal to Inter in an SP slice), SMbFlag
is set equal to 0.

The variable gP is derived as follows:

— If the input array c relates to a luma residual block and sMbFlag is equal to O,
gP = QP'y (8-330)
— Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1,

qP = QSy (8-331)

186 Rec. ITU-T H.264 (08/2021)

— Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0,

qP = QP’c (8-332)
— Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP = QSc (8-333)

Depending on the value of TransformBypassModeFlag, the following applies:

— If TransformBypassModeFlag is equal to 1, the output r is derived as:
rij=cij with i,j=0..3 (8-334)

— Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The scaling process for residual 4x4 blocks as specified in clause 8.5.12.1 is invoked with bitDepth, gP, and ¢
as the inputs and the output is assigned to the 4x4 array d of scaled transform coefficients with elements dj;.

2. The transformation process for residual 4x4 blocks as specified in clause 8.5.12.2 is invoked with bitDepth and
d as the inputs and the output is assigned to the 4x4 array r of residual sample values with elements rj.

8.5.12.1 Scaling process for residual 4x4 blocks
Inputs of this process are:
— the variables bitDepth and gP,

— a4x4 array c with elements cij which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is a 4x4 array of scaled transform coefficients d with elements dj;.

The bitstream shall not contain data that result in any element c;; of ¢ with i, j = 0..3 that exceeds the range of integer values
from —2(7 + bitDepth) yq (7 +bitDepth) — 1 " inclusive.

Scaling of 4x4 block transform coefficient levels c;j proceeds as follows:
— Ifall of the following conditions are true:

— iisequal to 0,

— jisequal to 0,

— crelates to a luma residual block coded using Intra_16x16 macroblock prediction mode or c relates to a chroma
residual block.

the variable doo is derived by
doo = Coo (8-335)

— Otherwise, the following applies:
— If gP is greater than or equal to 24, the scaled result is derived as

dij = (cjj * LevelScaledx4(P % 6, i, j)) << (gP /6 — 4), with i, j = 0..3 except as noted above (8-336)

— Otherwise (gP is less than 24), the scaled result is derived as
d; = (c; *LevelScaledxd(qP %6,i, j) +2° %) >> (4-qP/6), withi, j=0.3 except as noted above (s-337)

The bitstream shall not contain data that result in any element d;; of d with i, j = 0..3 that exceeds the range of integer values
from —2(7 *+ bitDepth) g (7 +bitDepth) — 1 " inclusive.

8.5.12.2 Transformation process for residual 4x4 blocks

Inputs of this process are:

— the variable bitDepth,

— a4x4 array of scaled transform coefficients d with elements dj;

Rec. ITU-T H.264 (08/2021) 187

Outputs of this process are residual sample values as 4x4 array r with elements r;.

The bitstream shall not contain data that result in any element d;; of d with i, j = 0..3 that exceeds the range of integer values
from —2(7 + bitDepth) yy (7 +bitDepth) _ 1 jnclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows:

eo=do+dp with i=0.3 (8-338)
en=do—dg with i=0.3 (8-339)
e2=(dy>>1)—ds with i=0.3 (8-340)
ea=dg+ (dis>>1), with i=0.3 (8-341)

The bitstream shall not contain data that result in any element ej; of e with i, j = 0..3 that exceeds the range of integer values
from —2(7 + bitDepth) ¢y (7 +bitDepth) _ 1 jnclusive.

Then, the transformed result is computed from these intermediate values as follows:

fio = eio + €53, with i=0..3 (8-342)
fii=ei +ep, with i=0.3 (8-343)
fio =61 —ep, with i=0.3 (8-344)
fiz = eio — i3, with i=0..3 (8-345)

The bitstream shall not contain data that result in any element f;; of f with i, j = 0..3 that exceeds the range of integer values
from —2(7 *+ bitDepth) yq (7 +bitDepth) — 1 inclusive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows:

goj = foj + f, with j=0..3 (8-346)
gyj = foj — fy5, with j=0..3 (8-347)
9oy = (f1;>>1) —f3;, with j=0.3 (8-348)
g3 =iy + (f5>>1), with j=0.3 (8-349)

The bitstream shall not contain data that result in any element gj; of g with i, j = 0..3 that exceeds the range of integer values
from —2(7 *+ bitDepth) g (7 +bitDepth) — 1 inclusive.

Then, the transformed result is computed from these intermediate values as follows:

hoj = goj + g3j, with j=0..3 (8-350)
hiyj = gsj + gy, with j=0.3 (8-351)
hoj = g1 — g2, with j=0..3 (8-352)
hsj = goj — g3j, with j=0.3 (8-353)

The bitstream shall not contain data that result in any element h;; of h with i, j = 0..3 that exceeds the range of integer values
from —2(7 + bitDepth) 4 2(7 +bitDepth) _ 33 jnclusive.

188 Rec. ITU-T H.264 (08/2021)

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values is derived as:

r=(h;+2°)>>6 with i,j=0.3 (8-354)

8.5.13 Scaling and transformation process for residual 8x8 blocks

Input to this process is an 8x8 array ¢ with elements c;; which is either an array relating to an 8x8 residual block of the
luma component or, when ChromaArrayType is equal to 3, an array relating to an 8x8 residual block of a chroma
component.

NOTE 1 — When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each coded picture (prior to the final assignment of the decoded picture to a
particular luma or chroma picture array according to the value of colour_plane_id).

Outputs of this process are residual sample values as 8x8 array r with elements r;.
The variables bitDepth and gP are derived as follows:

— If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthy and qP is set equal to QP'y.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthc and gP is set equal
to QP'c.

NOTE 2 — When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each colour component of a picture.

Depending on the value of TransformBypassModeFlag, the following applies:

— If TransformBypassModeFlag is equal to 1, the output r is derived as
rij = cj with i,j=0..7 (8-355)

— Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The scaling process for residual 8x8 blocks as specified in clause 8.5.13.1 is invoked with bitDepth, gP, and
c as the inputs and the output is assigned to the 8x8 array d of scaled transform coefficients with elements di;.

2. The transformation process for residual 8x8 blocks as specified in clause 8.5.13.2 is invoked with bitDepth
and d as the inputs and the output is assigned to the 8x8 array r of residual sample values with elements r;.

8.5.13.1 Scaling process for residual 8x8 blocks
Inputs of this process are:
— the variables bitDepth and gP,

— an 8x8 array ¢ with elements c;; which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is an 8x8 array of scaled transform coefficients d with elements dj;.

The bitstream shall not contain data that result in any element c;; of ¢ with i, j = 0..7 that exceeds the range of integer values
from —2(7 + bitDepth) iy (7 +bitDepth) _ 1 jnclusive.

The scaling process for 8x8 block transform coefficient levels cij proceeds as follows:

— If gP is greater than or equal to 36, the scaled result is derived as:

dij = (cij * LevelScale8x8(gP % 6, i, j)) << (qP /6 — 6), with i, j =0..7 (8-356)
— Otherwise (gP is less than 36), the scaled result is derived as:

dij = (cjj * LevelScale8x8(P % 6, i, j)) + 25°9°%) >> (6 — qP /6), with i, j = 0..7 (8-357)

The bitstream shall not contain data that result in any element d;; of d with i, j = 0..7 that exceeds the range of integer values
from —2(7 *+ bitDepth) yq (7 +bitDepth) — 1 inclusive.

8.5.13.2 Transformation process for residual 8x8 blocks
Inputs of this process are:

— the variable bitDepth,

Rec. ITU-T H.264 (08/2021) 189

— an 8x8 array of scaled transform coefficients d with elements di;.

Outputs of this process are residual sample values as 8x8 array r with elements r;.

The bitstream shall not contain data that result in any element d;j of d with i, j = 0..7 that exceeds the range of integer values

from —2(7 + bitDepth) ¢ (7 +bitDepth) — 1 jnclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner

mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as

follows:
— Aset of intermediate values e is derived by:

eio = dip + dis, with i=0..7

eir = — diz + dis — diz — (diz >> 1), with i=0..7
e = dip — dis, with i=0..7

eiz = diy + diz — dig — (dig >> 1), with i=0..7
eia = (dip >>1) —dig, with i =0..7

eis = — dig + di7 + dis + (dis >> 1), with i=0..7
ei = dip + (dig >> 1), with i=0..7

ei7 = dig + dis + dig + (dip >> 1), with i=0..7

— Asecond set of intermediate results f;; is computed from the intermediate values e;; as:

fio = ejo + €5, With i=0..7
fir = e + (657 >>2), with i=0..7
fio = ei2 + eia, with i=0..7
fis = eis + (65 >>2), with i=0..7
fia = €2 — eis, with i=0..7
fis = (eis >>2) —ej5, with i=0..7
fis = €io — €6, With i=0..7
fiz = eiz — (e >> 2), with i=0..7
— Then, the transformed result g; is computed from these intermediate values fj; as:
gio = fio + fiz, with i=0..7
gir = fio + fi5, with i =0..7
iz = fia + fiz, with i=0..7
iz = fis + fir, with i=0..7
gis = fis — fir, with i=0..7
gis = fia — fiz, with i =0..7

gis = fio — fis, with i=0..7

190 Rec. ITU-T H.264 (08/2021)

(8-358)
(8-359)
(8-360)
(8-361)
(8-362)
(8-363)
(8-364)

(8-365)

(8-366)
(8-367)
(8-368)
(8-369)
(8-370)
(8-371)
(8-372)

(8-373)

(8-374)
(8-375)
(8-376)
(8-377)
(8-378)
(8-379)

(8-380)

gi7 = fio — fiz, with i=0..7

(8-381)

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as

follows:

— Asset of intermediate values hjj is computed from the horizontally transformed value gj; as:

hoj = goj + g4, With j=0..7

hyj =—gsj + 0sj — 97y — (97 >> 1), with j=0.7
haj = goj — G4, With j=0..7

hsj = g1 + g7 — g3 — (g3 >> 1), with j=0.7
hsj= (g2 >>1) — g, with j=0.7

hsj = — gaj + g7j + Osj + (g5 >> 1), with j=0..7
hej = g2j + (gsj >> 1), with j=0.7

h7j = g3j + Osj + 035 + (g1 >> 1), with j=0..7

— Assecond set of intermediate results k;; is computed from the intermediate values h; as:

koj = hoj + hgj, with j=0..7
kij = hsj + (hy; >> 2), with j=0..7
koj = hgj + hgj, with j=0..7
ksj = hsj + (hs; >> 2), with j=0..7
Ksj = hgj — hgj, with j=0..7
ksj = (h3j >> 2) — hs;, with j=0..7
ksj = hoj — hgj, with j=0..7
kzj = hsj — (hy; >> 2), with j=0..7
— Then, the transformed result mj; is computed from these intermediate values k;j as:
Moj = Koj + k7, with j=0..7
myj = koj + ks, with j=0..7
my; = kygj + ksj, with j=0..7
ms;j = Kej + kg, with j=0..7
myj = kej — kaj, with j=0..7
Ms; = ks — kaj, with j=0..7
mej = kyj — ksj, with j=0..7

mzj = koj - k7j, with j =0..7

(8-382)
(8-383)
(8-384)
(8-385)
(8-386)
(8-387)
(8-388)

(8-389)

(8-390)
(8-391)
(8-392)
(8-393)
(8-394)
(8-395)
(8-396)

(8-397)

(8-398)
(8-399)
(8-400)
(8-401)
(8-402)
(8-403)
(8-404)

(8-405)

The bitstream shall not contain data that result in any element ejj, fj;, gi;, hij, or kj; for i and j in the range of 0..7, inclusive,

that exceeds the range of integer values from —2(7 *bitPepth) 4 2(7+bitDepth) — 1 jnclusive.

The bitstream shall not contain data that result in any element mj; for i and j in the range of 0..7, inclusive, that exceeds the

range of integer values from —2(7 * bitbepth) o (7 + bitDepth) — 33 “jinclysive.

Rec. ITU-T H.264 (08/2021)

191

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values are derived as

rij=(mj+2°)>>6 with i,j=0..7 (8-406)

8.5.14 Picture construction process prior to deblocking filter process

Inputs to this process are:

a sample array u with elements ujj which is a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block or a
4x4 luma block or a 4x4 chroma block or an 8x8 luma block or, when ChromaArrayType is equal to 3, an 8x8 chroma

block,

when u is not a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block, a block index luma4x4BIkldx or
chromadx4BIkldx or luma8x8BIlkldx or ch4x4BIkldx or cr4x4BIkldx or cb8x8Blkldx or cr8x8BIkldx.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in clause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When u is a luma block, for each sample uj; of the luma block, the following ordered steps are specified:

1.

2.

Depending on the size of the block u, the following applies:

If uis a 16x16 luma block, the position (xO, yO) of the upper-left sample of the 16x16 luma block inside
the macroblock is set equal to (0, 0) and the variable nE is set equal to 16.

Otherwise, if u is an 4x4 luma block, the position of the upper-left sample of the 4x4 luma block with index
lumadx4Blkldx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process
in clause 6.4.3 with luma4x4Blkldx as the input and the output being assigned to (XO, yO), and the variable
nE is set equal to 4.

Otherwise (u is an 8x8 luma block), the position of the upper-left sample of the 8x8 luma block with index
luma8x8Blkldx inside the macroblock is derived by invoking the inverse 8x8 luma block scanning process
in clause 6.4.5 with luma8x8Blkldx as the input and the output being assigned to (xO, yO), and the variable
nE is set equal to 8.

Depending on the variable MbaffFrameFlag and the current macroblock, the following applies:

If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock,
S\ [XP+xO+],yP+2*(yO+i)]=u; withi,j=0.nE-1 (8-407)
Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S [XP+XxO+]j,yP+yO +i]=uj withi,j=0.nE-1 (8-408)

When u is a chroma block, for each sample ujj of the chroma block, the following ordered steps are specified:

1.

2.

192

The subscript C in the variable S'c is replaced with Cb for the Cb chroma component and with Cr for the Cr chroma
component.

Depending on the size of the block u, the following applies:

If uis an (MbWidthC)x(MbHeightC) Cb or Cr block, the variable nW is set equal to MbWidthC, the variable
nH is set equal to MbHeightC, and the position (xO, yO) of the upper-left sample of the (nW)x(nH) Cb or
Cr block inside the macroblock is set equal to (0, 0).

Otherwise, if u is a 4x4 Ch or Cr block, the variables nW and nH are set equal to 4 and, depending on the
variable ChromaArrayType, the position of the upper-left sample of a 4x4 Cb or Cr block with index
chroma4x4Blkldx inside the macroblock is derived as follows:

— If ChromaArrayType is equal to 1 or 2, the position of the upper-left sample of the 4x4 chroma block
with index chroma4x4BIkldx inside the macroblock is derived by invoking the inverse 4x4 chroma
block scanning process in clause 6.4.7 with chroma4x4BIkldx as the input and the output being assigned
to (x0, yO).

— Otherwise (ChromaArrayType is equal to 3), the position of the upper-left sample of the 4x4 Cb block
with index cb4x4Blkldx or the 4x4 Cr block with index cr4x4BIkldx inside the macroblock is derived
by invoking the inverse 4x4 Cb or Cr block scanning process in clause 6.4.4 with cb4x4Blkldx or
crdx4Blkldx as the input and the output being assigned to (xO, yO).

Rec. ITU-T H.264 (08/2021)

— Otherwise (u is an 8x8 Cb or Cr block when ChromaArrayType is equal to 3), the variables nW and nH are
set equal to 8 and the position of the upper-left sample of the 8x8 Cb block with index ch8x8Blkldx or the
Cr block with index cr8x8BIkldx inside the macroblock is derived by invoking the inverse 8x8 Cb or Cr
block scanning process in clause 6.4.6 with ch8x8BIlkldx or cr8x8BIkldx as the input and the output being
assigned to (xO, yO).

3. Depending on the variable MbaffFrameFlag and the current macroblock, the following applies:

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock,

S'c[(xP / subWidthC) + xO + j, ((yP + SubHeightC — 1) / SubHeightC) + 2 * (yO +i)] = u;
withi=0.nH-1 and j=0.nW-1 (8-409)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S'c[(xP/ subWidthC) + xO +j, (yP / SubHeightC) + yO + i] = ujj
withi=0.nH-1 and j=0..nW -1 (8-410)
8.5.15 Intra residual transform-bypass decoding process

This process is invoked when TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to
Intra_4x4, Intra_8x8, or Intra_16x16, and the applicable intra prediction mode is equal to the vertical or horizontal mode.
The process for the Ch and Cr components is applied in the same way as for the luma (L or Y) component.

Inputs to this process are:
— two variables nW and nH,
— avariable horPredFlag,

— an (nW)x(nH) array r with elements r; which is either an array relating to a residual transform-bypass block of the
luma component or an array relating to a residual transform-bypass block of the Cb and Cr component.

Output of this process is a modified version of the (nW)x(nH) array r with elements r;; containing the result of the intra
residual transform-bypass decoding process.

Let f be a temporary (nW)x(nH) array with elements f;;, which are derived by:
fi=rj withi=0.nH-1 and j=0.nW -1 (8-411)

Depending on horPredFlag, the following applies:
— If horPredFlag is equal to 0, the modified array r is derived by:

r :ikaj withi=0.nH-1 and j=0.nW -1 (8-412)
k=0
— Otherwise (horPredFlag is equal to 1), the modified array r is derived by:

j
r=>f withi=0.nH-1 and j=0.nW-1 (8-413)
k=0

8.6 Decoding process for P macroblocks in SP slices or SI macroblocks
This process is invoked when decoding P macroblock types in an SP slice type or the SI macroblock type in Sl slices.

Inputs to this process are the prediction residual transform coefficient levels and the predicted samples for the current
macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This clause specifies the transform coefficient decoding process and picture construction process for P macroblock types
in SP slices and the SI macroblock type in Sl slices.

NOTE — SP slices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P slice
coding. Unlike P slice coding, however, SP slice coding allows identical reconstruction of a slice even when different reference
pictures are being used. Sl slices make use of spatial prediction, in a similar manner to | slices. Sl slice coding allows identical

Rec. ITU-T H.264 (08/2021) 193

reconstruction to a corresponding SP slice. The properties of SP and Sl slices aid in providing functionalities for bitstream switching,
splicing, random access, fast-forward, fast reverse, and error resilience/recovery.

An SP slice consists of macroblocks coded either as I macroblock types or P macroblock types.
An Sl slice consists of macroblocks coded either as | macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for |
macroblock types in Sl slices is invoked as specified in clause 8.5. The SI macroblock type is decoded as described below.

When the current macroblock is coded as P_Skip, all values of LumaLevel4x4, ChromaDCLevel, ChromaACLevel are set
equal to 0 for the current macroblock.

8.6.1 SP decoding process for non-switching pictures
This process is invoked, when decoding P macroblock types in SP slices in which sp_for_switch_flag is equal to 0.

Inputs to this process are Inter prediction samples for the current macroblock from clause 8.4 and the prediction residual
transform coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This clause applies to all macroblocks in SP slices in which sp_for_switch_flag is equal to 0, except those with macroblock
prediction mode equal to Intra_4x4 or Intra_16x16. It does not apply to Sl slices.

8.6.1.1 Luma transform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock pred. from clause 8.4 and the prediction
residual transform coefficient levels, LumaLevel4x4, and the index of the 4x4 luma block luma4x4BIkldx.

The position of the upper-left sample of the 4x4 luma block with index luma4x4BIlkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4Blkldx as the input and the
output being assigned to (X, y).

Let the variable p be a 4x4 array of prediction samples with element pj; being derived as:
pij = pred [x +j,y+i] withi,j=0.3 (8-414)
The variable p is transformed producing transform coefficients c” according to:

1 1 1 1y {Pop Pu Pz Pes| |1 2 1 1
2 1 -1-2 o Po P P Pi | 1 1-1-2
1 -1 -1 1] |Py Pu Pp Pyp| (1 -1 -1 2
1 -2 2 1] [Py Py P Pgs 1 -2 1 -1

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked with
LumaLevel4x4[luma4x4BIkldx] as the input and the two-dimensional array c" with elements c;j" as the output.

The prediction residual transform coefficients c" are scaled using quantization parameter QPv, and added to the transform
coefficients of the prediction block c? with i, j = 0..3 as follows:

Cii* = Ci + (((cijff * LevelScaledx4(QPy % 6,1,j) * Ajj) <<(QPy/6))>>10) (8-416)
where LevelScaledx4(m, i, j) is specified in Equation 8-313, and Aj; is specified as:

16 for (i,])e{(0,0),(0,2),(2,0),(2,2)},
Ajj=425 for (i,))e{(1,1) (1,3),(3.1),(3.3)} (8-417)
20 otherwise;

The function LevelScale2(m, i, j), used in the formulas below, is specified as

Wmo for (i,) €{(0,0), (0,2),(2,0), (2,2)},
LevelScale2(m,i,j)=<wp; for (i,))e{(1,1), (1,3), (3,1), (3,3)}, (8-418)
W, Otherwise;

where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as

194 Rec. ITU-T H.264 (08/2021)

13107 5243 8066

11916 4660 7490
w|10082 4194 6554 (8-419)

9362 3647 5825

8192 3355 5243

7282 2893 4559

The resulting sum, ¢*, is quantized with a quantization parameter QSy and with i, j = 0..3 as follows:

cij = Sign(¢i®) * ((Abs(ci®) * LevelScale2(QSy % 6,1,j) +(1<<(14+QSy/6)))>>(15+QSy/6))
(8-420)

The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with ¢ as the input
and r as the output.

The 4x4 array u with elements uj; is derived by:
uij = Cliply(rij) with i, j=0..3 (8-421)

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with luma4x4BIkldx and u
as the inputs.

8.6.1.2 Chroma transform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from clause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4Blkldx equal
to 0..3, the following ordered steps are specified:

1. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BIkldx inside the macroblock
is derived by invoking the inverse 4x4 chroma block scanning process in clause 6.4.7 with chroma4x4Blkldx as
the input and the output being assigned to (xO, yO).

2. Letpbe a4x4 array of prediction samples with elements p;; being derived as
pij = predc[x +j,y +i] withi,j=0..3 (8-422)

3. The 4x4 array p is transformed producing transform coefficients cP(chroma4x4BIkldx) using Equation 8-415.

4. The variable chromaList, which is a list of 16 entries, is derived. chromalList[0] is set equal to 0. chromalList[k]
with index k = 1..15 are specified as follows:

chromaList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx J[k — 1] (8-423)

5. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked
with chromalL.ist as the input and the 4x4 array c' as the output.

6. The prediction residual transform coefficients c" are scaled using quantization parameter QP¢, and added to the
transform coefficients of the prediction block c? with i, j = 0..3 except for the combination i =0, j = 0 as follows:

Cii® = ii’(chromadx4Blkldx) + (((¢’ * LevelScaledx4(QPc % 6,1, j) * Aij) << (QPc/6))>>10) (8-424)

7. The resulting sum, 5, is quantized with a quantization parameter QSc and with i, j = 0..3 except for the combination
i =0, j =0 as follows. The derivation of coo(chroma4x4Blkldx) is described below in this clause.

cij(chromadx4BIkldx) = (Sign(¢) * (Abs(¢ii®) * LevelScale2(QSc % 6,1,) +
(1<<(14+QSc/6))))>>(15+QSc/6) (8-425)

8. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
c(chroma4x4Blkldx) as the input and r as the output.

9. The 4x4 array u with elements uj; is derived by:

Rec. ITU-T H.264 (08/2021) 195

uij = Cliplc(rij) withi, j=0..3 (8-426)
10. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with
chroma4x4Blkldx and u as the inputs.

The derivation of the DC transform coefficient level coo(chromadx4BIkldx) is specified as follows. The DC transform
coefficients of the 4 prediction chroma 4x4 blocks of the current component of the macroblock are assembled into a 2x2
matrix with elements coo’(chroma4x4Blkldx) and a 2x2 transform is applied to the DC transform coefficients as follows:

dor |t L[4 @ ch@ | 1 1 (8-427)
1 -1] e (@ cp @] (2 -1

The chroma DC prediction residual transform coefficient levels, ChromaDCLevel[iCbCr][k] with k = 0..3 are scaled
using quantization parameter QPc, and added to the prediction DC transform coefficients as follows:

dci® = dci® + (((ChromaDClLevel[iCbCr][j * 2 +i]* LevelScale4x4(QPc % 6, 0, 0) * Ag) << (QPc/6))
>>9) withi, j=0,1 (8-428)

The 2x2 array dc®, is quantized using the quantization parameter QSc as follows:

dcij" = (Sign(dci®) * (Abs(dci®) * LevelScale2(QSc % 6, 0,0) + (1 << (15+QSc/6))))>>(16+QSc/6)
withi,j=0,1 (8-429)

The 2x2 array f with elements fij and i, j = 0..1 is derived as:
1 1 p p 1 1
f= o G0 |, (8-430)
1 - de, dc;, | |1 -
Scaling of the elements fj; of f is performed as follows:

Coo j* 2 +1) = ((fij * LevelScale4x4(QSc % 6,0,0)) << (QSc/6)) >>5 withi, j=0, 1 (8-431)

8.6.2 SP and Sl slice decoding process for switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp_for_switch_flag is equal to 1 and
when decoding the SI macroblock type in Sl slices.

Inputs to this process are the prediction residual transform coefficient levels and the prediction sample arrays pred., predc
and predc; for the current macroblock.

8.6.2.1 Luma transform coefficient decoding process

Inputs to this process are prediction luma samples pred. and the luma prediction residual transform coefficient levels,
LumaLevel4x4.

The 4x4 array p with elements pjj with i, j = 0..3 is derived as in clause 8.6.1.1, is transformed according to Equation 8-415
to produce transform coefficients cP. These transform coefficients are then quantized with the quantization parameter QSy,
as follows:

cii* = Sign(ci?) * ((Abs(¢i?) * LevelScale2(QSy % 6,1i,j) +(1<<(14+QSy/6)))>>(15+QSy/6))
withi,j=0..3 (8-432)

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked with
LumaLevel4x4[lumadx4BIkldx] as the input and the two-dimensional array c" with elements c;j" as the output.

The 4x4 array ¢ with elements c;; with i, j = 0..3 is derived by:
Gij = ¢’ + ¢i° withi, j=0..3 (8-433)

The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with ¢ as the input
and r as the output.

The 4x4 array u with elements uj; is derived by:

uij = Cliply(rij) with i, j=0..3 (8-434)

196 Rec. ITU-T H.264 (08/2021)

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with luma4x4BIkldx and u
as the inputs.

8.6.2.2 Chroma transform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from clause 8.4 and the prediction residual
transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4BIkldx with chroma4x4Blkldx equal
to 0..3, the following ordered steps are specified:

1. The 4x4 array p with elements p; with i, j = 0..3 is derived as in clause 8.6.1.2, is transformed according to
Equation 8-415 to produce transform coefficients cP(chroma4x4BIkldx). These transform coefficients are then
quantized with the quantization parameter QSc, with i, j = 0..3 except for the combination i = 0, j = 0 as follows.
The processing of cooP(chromadx4BIkldx) is described below in this clause.

cii® = (Sign(¢ii°(chromadx4Blkldx)) * (Abs(ci?(chroma4x4Blkldx)) *
LevelScale2(QSc % 6,1i,j)+ (1<<(14+QSc/6))))>>(15+QSc/6) (8-435)

2. The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromaList[k]
with index k = 1..15 are specified as follows:

chromalList[k] = ChromaACLevel[iCbCr][chromadx4BIkldx J[k —1] (8-436)

3. Theinverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked
with chromaList as the input and the two-dimensional array c'(chromad4x4BIkldx) with elements
cij(chroma4x4BIkldx) as the output.

4. The 4x4 array c(chroma4x4BIkldx) with elements ci(chromadx4BIkldx) with i, j = 0..3 except for the
combination i = 0, j = 0 is derived as follows. The derivation of coo(chroma4x4Blkldx) is described below.

Cij(chromadx4Blkldx) = ¢;j'(chromadx4BIkldx) + ¢; (8-437)

5. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
¢(chroma4x4Blkldx) as the input and r as the output.

6. The 4x4 array u with elements ujj is derived by:
uij = Cliplc(rj) with i, j=0..3 (8-438)
7. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with
chroma4x4Blkldx and u as the inputs.

The derivation of the DC transform coefficient level coo(chromadx4BIkldx) is specified as follows. The DC transform
coefficients of the 4 prediction 4x4 chroma blocks of the current component of the macroblock, coo®(chroma4x4BIkldx),
are assembled into a 2x2 matrix, and a 2x2 transform is applied to the DC transform coefficients of these blocks according
to Equation 8-427 resulting in DC transform coefficients dc;®.

These DC transform coefficients are then quantized with the quantization parameter QSc, as given by:

dci® = (Sign(dci®) * (Abs(dci®) * LevelScale2(QSc %6,0,0) + (1<<(15+QSc/6))))>>
(16+QSc/6) withi,j=0,1 (8-439)

The parsed chroma DC prediction residual transform coefficients, ChromaDCLevel[iCbCr][k] with k = 0..3 are added
to these quantized DC transform coefficients of the prediction block, as given by:

dcij” = dci® + ChromaDClLevel[iCbCr][j*2+i] withi, j=0,1 (8-440)

The 2x2 array f with elements fjj and i, j = 0..1 is derived using Equation 8-430.

The 2x2 array f with elements fi; and i, j = 0..1 is copied as follows:

Coo(j*2+1)="F; withi,j=0,1 (8-441)

Rec. ITU-T H.264 (08/2021) 197

8.7 Deblocking filter process

A conditional filtering process is specified in this clause that is an integral part of the decoding process which shall be
applied by decoders conforming to the Baseline, Constrained Baseline, Main, Extended, High, Progressive High,
Constrained High, High 10, Progressive High 10, High 4:2:2, and High 4:4:4 Predictive profiles. For decoders conforming
to the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles, the filtering process specified in
this clause, or one similar to it, should be applied but is not required.

The conditional filtering process is applied to all NxN (where N=4 or N=8 for luma, N =4 for chroma when
ChromaArrayType is equal to 1 or 2, and N =4 or N = 8 for chroma when ChromaArrayType is equal to 3) block edges
of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is disabled
by disable_deblocking_filter_idc, as specified below. This filtering process is performed on a macroblock basis after the
completion of the picture construction process prior to deblocking filter process (as specified in clauses 8.5 and 8.6) for
the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock addresses.

NOTE 1 - Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock or
macroblock pair above (if any) and the macroblock or macroblock pair to the left (if any) of the current macroblock are always
available because the deblocking filter process is performed after the completion of the picture construction process prior to
deblocking filter process for the entire decoded picture. However, for purposes of determining which edges are to be filtered when
disable_deblocking_filter_idc is equal to 2, macroblocks in different slices are considered not available during specified steps of the
operation of the deblocking filter process.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and each
component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock proceeding
through the edges towards the right-hand side of the macroblock in their geometrical order, and then horizontal edges are
filtered, starting with the edge on the top of the macroblock proceeding through the edges towards the bottom of the
macroblock in their geometrical order. Figure 8-10 shows edges of a macroblock which can be interpreted as luma or
chroma edges.

When interpreting the edges in Figure 8-10 as luma edges, depending on the transform_size 8x8_flag, the following
applies:

— Iftransform_size_8x8_flag is equal to 0, both types, the solid bold and dashed bold luma edges are filtered.

— Otherwise (transform_size 8x8 flag is equal to 1), only the solid bold luma edges are filtered.

When interpreting the edges in Figure 8-10 as chroma edges, depending on ChromaArrayType, the following applies:
— If ChromaArrayType is equal to 1 (4:2:0 format), only the solid bold chroma edges are filtered.

— Otherwise, if ChromaArrayType is equal to 2 (4:2:2 format), the solid bold vertical chroma edges are filtered and
both types, the solid bold and dashed bold horizontal chroma edges are filtered.

— Otherwise, if ChromaArrayType is equal to 3 (4:4:4 format), the following applies:
— Iftransform_size 8x8 flag is equal to 0, both types, the solid bold and dashed bold chroma edges are filtered.

— Otherwise (transform_size 8x8 flag is equal to 1), only the solid bold chroma edges are filtered.
— Otherwise (ChromaArrayType is equal to 0), no chroma edges are filtered.

198 Rec. ITU-T H.264 (08/2021)

Horizontal edges

T T T T H.264(09)_F8-10

Vertical edges

Figure 8-10 — Boundaries in a macroblock to be filtered

For the current macroblock address CurrMbAddr proceeding over values 0..PicSizelnMbs — 1, the following ordered steps
are specified:

1. The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

2. The variables fieldMbInFrameFlag, filterinternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are
derived as specified by the following ordered steps:

a. The variable fieldMbInFrameFlag is derived as follows:

— If MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1, fieldMbInFrameFlag is set
equal to 1.

— Otherwise (MbaffFrameFlag is equal to O or mb_field decoding flag is equal to 0),
fieldMblnFrameFlag is set equal to 0.

b. The variable filterInternalEdgesFlag is derived as follows:

— If disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1,
the variable filterInternalEdgesFlag is set equal to 0.

— Otherwise (disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is
not equal to 1), the variable filterInternalEdgesFlag is set equal to 1.

c. The variable filterLeftMbEdgeFlag is derived as follows:
— If any of the following conditions are true, the variable filterLeftMbEdgeFlag is set equal to 0:
— MbaffFrameFlag is equal to 0 and CurrMbAddr % PicWidthInMbs is equal to O,
— MbaffFrameFlag is equal to 1 and (CurrMbAddr >> 1) % PicWidthInMbs is equal to 0,

— disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to1l,

— disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 2 and the macroblock mbAddrA is not available.

— Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.
d. The variable filterTopMbEdgeFlag is derived as follows:
— If any of the following conditions are true, the variable filterTopMbEdgeFlag is set equal to 0:
— MbaffFrameFlag is equal to 0 and CurrMbAddr is less than PicWidthInMbs,

— MbaffFrameFlag is equal to 1, (CurrMbAddr >>1) is less than PicWidthinMbs, and the
macroblock CurrMbAddr is a field macroblock,

— MbaffFrameFlag is equal to 1, (CurrMbAddr>>1) is less than PicWidthinMbs, the
macroblock CurrMbAddr is a frame macroblock, and CurrMbAddr % 2 is equal to 0,

Rec. ITU-T H.264 (08/2021) 199

3.

200

— disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 1,

— disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 2 and the macroblock mbAddrB is not available.

— Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

Given the variables fieldMbinFrameFlag, filterinternalEdgesFlag, filterLeftMbEdgeFlag and
filterTopMbEdgeFlag the deblocking filtering is controlled as follows:

a. When filterLeftMbEdgeFlag is equal to 1, the left vertical luma edge is filtered by invoking the process
specified in clause 8.7.1 with chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEx, YEx) = (0, k) with k = 0..15 as the inputs
and S'L as the output.

b. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified by the
following ordered steps:

i. When transform_size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =1, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag,
and (XEx, YEx) = (4, k) with k = 0..15 as the inputs and S',_ as the output.

ii. The process specified in clause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEk, YEk) = (8, k) with k=0..15 as the
inputs and S'L as the output.

iii. When transform_size_8x8 flag is equal to O, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =1, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag,
and (XEx, YEx) = (12, k) with k = 0..15 as the inputs and S’ as the output.

c. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows:

— If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or equal
to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the macroblock
(CurrMbAddr — 2 * PicWidthinMbs + 1) is a field macroblock, the following ordered steps are
specified:

i. The process specified in clause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0,
fieldModelnFrameFilteringFlag = 1, and (xEx, YEx) = (k, 0) with k =0..15 as the inputs and S'.
as the output.

ii. The process specified in clause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0,
fieldModelnFrameFilteringFlag = 1, and (xEx, YEx) = (k, 1) with k =0..15 as the inputs and S',
as the output.

— Otherwise, the process specified in clause8.7.1 is invoked with chromaEdgeFlag =0,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEx, YEx) = (k, 0)
with k = 0..15 as the inputs and S’ as the output.

d. When filterinternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified by
the following ordered steps:

i. When transform_size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =0, fieldModelnFrameFilteringFlag = fieldMblInFrameFlag,
and (XEx, YEx) = (k, 4) with k = 0..15 as the inputs and S', as the output.

ii. The process specified in clause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag =0,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEx, YEk) = (k, 8) with k=0..15 as the
inputs and S’ as the output.

iii. When transform_size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =0, fieldModelnFrameFilteringFlag = fieldMblnFrameFlag,
and (XEx, YEx) = (k, 12) with k = 0..15 as the inputs and S’ as the output.

e. When ChromaArrayType is not equal to O, for the filtering of both chroma components, with iCbCr = 0 for
Cb and iChCr = 1 for Cr, the following ordered steps are specified:

i. When filterLeftMbEdgeFlag is equal to 1, the left vertical chroma edge is filtered by invoking the
process specified in clause 8.7.1 with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag =1,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XExk, YEK) = (0, k) with

Rec. ITU-T H.264 (08/2021)

k = 0..MbHeightC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbhCr = 1 as the output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified
by the following ordered steps:

1)

)

®3)

When ChromaArrayType is not equal to 3 or transform_size 8x8 flag is equal to O, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag = 1,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEx, YEK) = (4, k) with
k = 0..MbHeightC — 1 as the inputs and S’c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as the output.

When ChromaArrayType is equal to 3, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag =1, fieldModelnFrameFilteringFlag =
fieldMblInFrameFlag, and (XEx, YEx) = (8, k) with k = 0..MbHeightC — 1 as the inputs and S'c with
C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

When ChromaArrayType is equal to 3 and transform_size_8x8 flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag = 1,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEk, YEK) = (12, k) with
k = 0..MbHeightC — 1 as the inputs and S’c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as the output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified
as follows:

If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or
equal to 2 * PicWidthinMbs, the macroblock CurrMbAddr is a frame macroblock, and the
macroblock (CurrMbAddr — 2 * PicWidthInMbs + 1) is a field macroblock, the following
ordered steps are specified:

(1) The process specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iChCr,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag =1, and (XEx, YEx) = (k, 0) with
k = 0..MbWidthC — 1 as the inputs and S’c with C being replaced by Cb for iCbCr =0 and C
being replaced by Cr for iCbCr = 1 as the output.

(2) The process specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iChCr,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag =1, and (XEx, YEx) = (k, 1) with
k = 0..MbWidthC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr =0 and C
being replaced by Cr for iCbCr = 1 as the output.

Otherwise, the process specified in clause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and
(XEx, YEK) = (k, 0) with k = 0..MbWidthC — 1 as the inputs and S’c with C being replaced by Ch
for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is
specified by the following ordered steps:

1)

()

®3)

(4)

When ChromaArrayType is not equal to 3 or transform_size_8x8_flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag = 0,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEx, YEx) =(k, 4) with
k = 0..MbWidthC — 1 as the inputs and S’c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as the output.

When ChromaArrayType is not equal to 1, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag =0, fieldModelnFrameFilteringFlag =
fieldMblInFrameFlag, and (XEx, YEx) = (k, 8) with k = 0..MbWidthC — 1 as the inputs and S'c with
C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

When ChromaArrayType is equal to 2, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag =0, fieldModelnFrameFilteringFlag =
fieldMblInFrameFlag, and (XEx, YEx) = (k, 12) with k = 0..MbWidthC — 1 as the inputs and S’c with
C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

When ChromaArrayType is equal to 3 and transform_size 8x8 flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag = 0,
fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (XEk YEK) =(k, 12) with

Rec. ITU-T H.264 (08/2021) 201

k = 0..MbWidthC — 1 as the inputs and S’c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbhCr = 1 as the output.

NOTE 2 — When field mode filtering (fieldModelnFrameFilteringFlag is equal to 1) is applied across the top
horizontal edges of a frame macroblock, this vertical filtering across the top or bottom macroblock boundary may
involve some samples that extend across an internal block edge that is also filtered internally in frame mode.

NOTE 3 - For example, in 4:2:0 chroma format when transform_size_8x8_flag is equal to 0, the following applies.
3 horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for Cr are filtered that are
internal to a macroblock. When field mode filtering (fieldModelInFrameFilteringFlag is equal to 1) is applied to the
top edges of a frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma
edges for Cr between the frame macroblock and the above macroblock pair are filtered using field mode filtering,
for a total of up to 5 horizontal luma edges, 3 horizontal chroma edges for Cb, and 3 horizontal chroma edges for
Cr filtered that are considered to be controlled by the frame macroblock. In all other cases, at most 4 horizontal
luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma edges for Cr are filtered that are considered to be
controlled by a particular macroblock.

Depending on separate_colour_plane_flag the following applies:

— If separate_colour_plane_flag is equal to O, the arrays S'L, S'ch, S'cr are assigned to the arrays S, Sch, Scr (Which
represent the decoded picture), respectively.

— Otherwise (separate_colour_plane_flag is equal to 1), the following applies:

— If colour_plane_id is equal to O, the arrays S', is assigned to the array S, (which represent the luma component
of the decoded picture).

— Otherwise, if colour_plane_id is equal to 1, the arrays S’, is assigned to the array Sc, (which represents the Cb
component of the decoded picture).

— Otherwise (colour_plane_id is equal to 2), the arrays S', is assigned to the array Scr (which represents the Cr
component of the decoded picture).

8.7.1 Filtering process for block edges

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1),
verticalEdgeFlag, fieldModelnFrameFilteringFlag, and a set of nE sample locations (XEk, YEk), with k=0..nE -1,
expressed relative to the upper left corner of the macroblock CurrMbAddr. The set of sample locations (XEk, YEx) represent
the sample locations immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below
a horizontal edge (when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows:

— If chromaEdgeFlag is equal to 0, nE is set equal to 16.

— Otherwise (chromaEdgeFlag is equal to 1), nE is set equal to (verticalEdgeFlag == 1) ? MbHeightC : MbWidthC.

Let s’ be a variable specifying a luma or chroma sample array. s’ is derived as follows:
— If chromaEdgeFlag is equal to 0, s’ represents the luma sample array S’ of the current picture.

— Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to 0, s’ represents the chroma sample array S'cy of the
chroma component Ch of the current picture.

— Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s’ represents the chroma sample array S'c of the
chroma component Cr of the current picture.

The variable dy is set equal to (1 + fieldModelnFrameFilteringFlag).

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse macroblock
scanning process in clause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to (xI, yI).

The variables xP and yP are derived as follows:
— If chromaEdgeFlag is equal to 0, XP is set equal to xI and yP is set equal to yl.

— Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / SubWidthC and yP is set equal to
(yl + SubHeightC — 1) / SubHeightC.

202 Rec. ITU-T H.264 (08/2021)

Ps P2 P1 Po I Jo (of 02 Js

Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (XEx, YEk), k = 0..(nE — 1), the following ordered steps are specified:

1. The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as
pi and gi with i = 0..3 as shown in Figure 8-11 with the edge lying between po and go. pi and g; with i = 0..3 are
specified as follows:

— If verticalEdgeFlag is equal to 1,
Qi =S'[XP + XEx +1i, yP + dy * yEx] (8-442)
pi =S [XP+ XEx—i—1,yP +dy *yE«] (8-443)
— Otherwise (verticalEdgeFlag is equal to 0),
Qi =S[XP+XxEx yP+dy * (YEk+i)— (YEx % 2)] (8-444)
Pi=S[XP+XEx, yP+dy * (YExk—i—1)— (YEx% 2)] (8-445)
2. The process specified in clause 8.7.2 is invoked with the sample values pi and g; (i = 0..3), chromaEdgeFlag, and

verticalEdgeFlag as the inputs, and the output is assigned to the filtered result sample values p’; and g'i with i = 0..2.

3. The input sample values p; and g; with i = 0..2 are replaced by the corresponding filtered result sample values p’;
and q'i with i = 0..2 inside the sample array s’ as follows:

— If verticalEdgeFlag is equal to 1,
S'[XP + xEx +1i, yP +dy *yEx] = (i (8-446)
S[XP+XEx—i—1,yP+dy*yEc]=p'i (8-447)
— Otherwise (verticalEdgeFlag is equal to 0),
S'[XP +xEx, yP+dy * (YEx+1)— (YExk% 2)] =0’ (8-448)
S[XP +xEx, yP+dy * (YyEx—i—1)—(yEk% 2)]=p'i (8-449)

8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are the input sample values p; and g; with i in the range of 0..3 of a single set of samples across an
edge that is to be filtered, chromaEdgeFlag, and verticalEdgeFlag.

Outputs of this process are the filtered result sample values p’i and g'; with i in the range of 0..2.
The content dependent boundary filtering strength variable bS is derived as follows:

— IfchromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength specified
in clause 8.7.2.1 is invoked with po, go, and verticalEdgeFlag as input, and the output is assigned to bS.

— Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical chroma
edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge, respectively,
that contains the luma sample at location (SubWidthC * x, SubHeightC * y) inside the luma array of the same field,
where (X, y) is the location of the chroma sample qo inside the chroma array for that field.

Let filterOffsetA and filterOffsetB be the values of FilterOffsetA and FilterOffsetB as specified in clause 7.4.3 for the slice
that contains the macroblock containing sample qo.

Let gP, and gPq be variables specifying quantization parameter values for the macroblocks containing the samples po and
Qo, respectively. The variables gP, (with z being replaced by p or q) are derived as follows:

— If chromaEdgeFlag is equal to 0, the following applies:

Rec. ITU-T H.264 (08/2021) 203

— If the macroblock containing the sample z is an I_PCM macroblock, gP; is set to 0.

— Otherwise (the macroblock containing the sample zo is not an I_PCM macroblock), gP; is set to the value of QPy
of the macroblock containing the sample zo.

— Otherwise (chromaEdgeFlag is equal to 1), the following applies:

— If the macroblock containing the sample zq is an I_PCM macroblock, gP; is set equal to the value of QP that
corresponds to a value of 0 for QPy as specified in clause 8.5.8.

— Otherwise (the macroblock containing the sample zg is not an I_PCM macroblock), qP; is set equal to the value
of QPc that corresponds to the value QPy of the macroblock containing the sample z as specified in clause 8.5.8.

The process specified in clause 8.7.2.2 is invoked with po, go, p1, g1, chromaEdgeFlag, bS, filterOffsetA, filterOffsetB, gPp,
and gPq as inputs, and the outputs are assigned to filterSamplesFlag, indexA, a, and B.

The variable chromaStyleFilteringFlag is set by

chromaStyleFilteringFlag = chromaEdgeFlag && (ChromaArrayType = 3) (8-450)

Depending on the variable filterSamplesFlag, the following applies:
— IffilterSamplesFlag is equal to 1, the following applies:

— If bSiis less than 4, the process specified in clause 8.7.2.3 is invoked with p; and gi (i = 0..2), chromaEdgeFlag,
chromaStyleFilteringFlag, bS, B, and indexA given as input, and the output is assigned to p’;and q'; (i = 0..2).

— Otherwise (bS is equal to 4), the process specified in clause 8.7.2.4 is invoked with pi and ¢i (i = 0..3),
chromaEdgeFlag, chromaStyleFilteringFlag, o, and B given as input, and the output is assigned to p’; and ('i
(i=0.2).

— Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p’i and q'i (i = 0..2) are replaced by the
corresponding input samples p; and g;:

fori=0..2, P'i = pi (8-451)
fori=0..2, qi=qi (8-452)

8.7.2.1 Derivation process for the luma content dependent boundary filtering strength

Inputs to this process are the input sample values po and qo of a single set of samples across an edge that is to be filtered
and verticalEdgeFlag.

Output of this process is the variable bS.
Let the variable mixedModeEdgeFlag be derived as follows:

— If MbaffFrameFlag is equal to 1 and the samples po and go are in different macroblock pairs, one of which is a field
macroblock pair and the other is a frame macroblock pair, mixedModeEdgeFlag is set equal to 1.

— Otherwise, mixedModeEdgeFlag is set equal to 0.
The variable bS is derived as follows:

— If the block edge is also a macroblock edge and any of the following conditions are true, a value of bS equal to 4 is
the output:

— the samples po and ¢ are both in frame macroblocks and either or both of the samples po or o is in a macroblock
coded using an Intra macroblock prediction mode,

— the samples po and qo are both in frame macroblocks and either or both of the samples po or qo is in a macroblock
that is in a slice with slice_type equal to SP or S,

— MbaffFrameFlag is equal to 1 or field_pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples po or qo is in a macroblock coded using an Intra macroblock prediction mode,

— MbaffFrameFlag is equal to 1 or field_pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples po or qo is in a macroblock that is in a slice with slice_type equal to SP or SI.

— Otherwise, if any of the following conditions are true, a value of bS equal to 3 is the output:

— mixedModeEdgeFlag is equal to 0 and either or both of the samples po or qo is in a macroblock coded using an
Intra macroblock prediction mode,

204 Rec. ITU-T H.264 (08/2021)

mixedModeEdgeFlag is equal to 0 and either or both of the samples po or qo is in a macroblock that is in a slice
with slice_type equal to SP or SI,

mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples po or go is in
a macroblock coded using an Intra macroblock prediction mode,

mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples po or go is in
a macroblock that is in a slice with slice_type equal to SP or SI.

Otherwise, if any of the following conditions are true, a value of bS equal to 2 is the output:

transform_size 8x8 flag is equal to 1 for the macroblock containing the sample po and the 8x8 luma transform
block associated with the 8x8 luma block containing the sample po contains non-zero transform coefficient levels,

transform_size 8x8 flag is equal to O for the macroblock containing the sample po and the 4x4 luma transform
block associated with the 4x4 luma block containing the sample po contains non-zero transform coefficient levels,

transform_size 8x8 flag is equal to 1 for the macroblock containing the sample qo and the 8x8 luma transform
block associated with the 8x8 luma block containing the sample qo contains non-zero transform coefficient levels,

transform_size_8x8 flag is equal to O for the macroblock containing the sample qo and the 4x4 luma transform
block associated with the 4x4 luma block containing the sample go contains non-zero transform coefficient levels.

Otherwise, if any of the following conditions are true, a value of bS equal to 1 is the output:

mixedModeEdgeFlag is equal to 1,

mixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock/sub-macroblock partition containing
the sample po different reference pictures or a different number of motion vectors are used than for the prediction
of the macroblock/sub-macroblock partition containing the sample qo,
NOTE 1 — The determination of whether the reference pictures used for the two macroblock/sub-macroblock partitions
are the same or different is based only on which pictures are referenced, without regard to whether a prediction is formed
using an index into reference picture list 0 or an index into reference picture list 1, and also without regard to whether
the index position within a reference picture list is different.

NOTE 2 — The number of motion vectors that are used for the prediction of a macroblock partition with macroblock
partition index mbPartldx, or a sub-macroblock partition contained in this macroblock partition, is equal to
PredFlagLO[mbPartldx] + PredFlagL1[mbPartldx].

mixedModeEdgeFlag is equal to 0 and one mation vector is used to predict the macroblock/sub-macroblock
partition containing the sample po and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample qo and the absolute difference between the horizontal or vertical components of
the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples,

mixedModeEdgeFlag is equal to 0 and two mation vectors and two different reference pictures are used to predict
the macroblock/sub-macroblock partition containing the sample po and two motion vectors for the same two
reference pictures are used to predict the macroblock/sub-macroblock partition containing the sample qo and, for
either or both of the two used reference pictures, the absolute difference between the horizontal or vertical
components of the two motion vectors used in the prediction of the two macroblock/sub-macroblock partitions
for the particular reference picture is greater than or equal to 4 in units of quarter luma frame samples,

mixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict the
macroblock/sub-macroblock partition containing the sample po and two motion vectors for the same reference
picture are used to predict the macroblock/sub-macroblock partition containing the sample go and both of the
following conditions are true:

— The absolute difference between the horizontal or vertical components of list 0 motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4 in quarter luma
frame samples or the absolute difference between the horizontal or vertical components of the list 1 motion
vectors used in the prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4
in units of quarter luma frame samples,

— The absolute difference between the horizontal or vertical components of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample po and the list 1 motion vector
used in the prediction of the macroblock/sub-macroblock partition containing the sample qo is greater than
or equal to 4 in units of quarter luma frame samples or the absolute difference between the horizontal or
vertical components of the list 1 motion vector used in the prediction of the macroblock/sub-macroblock
partition containing the sample po and list 0 motion vector used in the prediction of the macroblock/sub-
macroblock partition containing the sample qo is greater than or equal to 4 in units of quarter luma frame
samples.

Rec. ITU-T H.264 (08/2021) 205

NOTE 3 — A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter
luma field samples.

— Otherwise, a value of bS equal to 0 is the output.

8.7.2.2 Derivation process for the thresholds for each block edge

Inputs to this process are:

— the input sample values po, qo, p1 and a1 of a single set of samples across an edge that is to be filtered,
— the variables chromaEdgeFlag and bS, for the set of input samples, as specified in clause 8.7.2,

— the variables filterOffsetA, filterOffsetB, gP,, and qPy.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the value
of indexA, and the values of the threshold variables o and .

Let gPav be a variable specifying an average quantization parameter. It is derived as:
QPav = (QPp+qPq+1)>>1 (8-453)

NOTE — In SP and Sl slices, gPav is derived in the same way as in other slice types. QSy from Equation 7-31 is not used in the
deblocking filter.

Let indexA be a variable that is used to access the o table (Table 8-16) as well as the tco table (Table 8-17), which is used
in filtering of edges with bS less than 4 as specified in clause 8.7.2.3, and let indexB be a variable that is used to access the
j3 table (Table 8-16). The variables indexA and indexB are derived as:

indexA = Clip3(0, 51, qPay + filterOffsetA) (8-454)
indexB = Clip3(0, 51, gPay + filterOffsetB) (8-455)

The variables o’ and B’ depending on the values of indexA and indexB are specified in Table 8-16. Depending on
chromaEdgeFlag, the corresponding threshold variables o and B are derived as follows:

— If chromaEdgeFlag is equal to 0,

o =a'*(1<<(BitDepthy —8)) (8-456)

B =p"*(1<<(BitDepthy —8)) (8-457)
— Otherwise (chromaEdgeFlag is equal to 1),

o =a' *(1<<(BitDepthc —8)) (8-458)

B=p"* (1<<(BitDepthc—8)) (8-459)
The variable filterSamplesFlag is derived by:

filterSamplesFlag = (bS =0 && Abs(po— o) <o && Abs(pi—po)<P && Abs(qi—q)<B) (8-460)

Table 8-16 — Derivation of offset dependent threshold variables a” and B~ from indexA and indexB

indexA (for ') or indexB (for ')

0|12 34|56 |7|8|9|10(11|12|13|14|15|16|17|18|19|20|21|22|23|24|25

«J]o0|0}0,0|0|0}O0O(O0O|j0O|O}|O|O|O|O|O|O|4|4|5|6|T7|8]|9]|10/12|13

p}Jjo;jo0jo0o,0f0|0|j0O|0O}j0OjOJO0O|0OjO|O0O|0]|0|2|2]|2|3|3|3|3|4,|4]4

206 Rec. ITU-T H.264 (08/2021)

Table 8-16 (concluded) — Derivation of indexA and indexB from offset dependent threshold variables o’ and B’

indexA (for ') or indexB (for ')
2627 (28|29|30|31(32|33|34|35|36(37(38(39|40|41|42|43|44|45|46|47|48|49|50 |51
o |15|17|20|22|25|28|32|36|40|45|50 |56 |63 |71|80|90|(101|113|127|144|162|182|203|226|255|255
B’ 6|6 |7|7,8|8|9]9/|10/10({11|11(12|12|13|13|14|14|15|15|16|16|17|17 |18 |18

8.7.2.3 Filtering process for edges with bS less than 4

Inputs to this process are the input sample values pi and q; (i = 0..2) of a single set of samples across an edge that is to be

filtered, chromaEdgeFlag, chromaStyleFilteringFlag, bS, B, and indexA, for the set of input samples, as specified in
clause 8.7.2.

Outputs of this process are the filtered result sample values p'i and q'; (i = 0..2) for the set of input sample values.

Depending on the values of indexA and bS, the variable t'co is specified in Table 8-17. Depending on chromaEdgeFlag,
the corresponding threshold variable tco is derived as follows:

— If chromaEdgeFlag is equal to 0,

tco =t'co * (1 << (BitDepthy — 8))

— Otherwise (chromaEdgeFlag is equal to 1),

tco =t'co * (1 << (BitDepthc — 8))

(8-461)

(8-462)

Table 8-17 — Value of variable t"co as a function of indexA and bS

indexA
0/1/2,3|4|5/6|7|8|9/10/11 12/13|14|15|16|17/18|19|20|21|22|23|24|25
bs=1 o, o/0,0/0/0}j]0fO|0O|0O|O|O|O|0O|O|O/O0O|0O|O0O|O|O/O0O|0|1|1/12
bS=2 o,o/0,0/]0}/]0}j0lO|O|0O|OjO|O|O0O|O|]O/O0O]0O|O]|O|O 21|11 |12
bS=3 o o/0,0/0/0}j0fO0O|j0O0O|0O|OjOjO|O|OjO/O]21|1 |22 21|11 |12

Table 8-17 (concluded) — Value of variable t'co as a function of indexA and bS

indexA
2627|2829 |30/31/32|33|34(35/36/37|38[39|40/41|42|43|44|45|46|47|48|49|50|51
bsS=1 iT1/1/1|1}1/1/1,2|2}2|2/3|3|3|/4|4/4|5|/6|6|7|8|9]10/11/13
bS=2 1/1{1,1/1/2|22, 2|3/ 3/3/4|4/5|5/6,7|8|8|1011|12|13|15|17
bS=3 1/2,2|22|3/3/3|/4/4/4/5|/6|6/|7|8|9|10|/11/13/14/16|18|20|2325

The threshold variables a, and aq are derived by:

ap = Abs(pz—po)
ag = Abs(g2 —do)

The threshold variable tc is determined as follows:

— If chromaStyleFilteringFlag is equal to 0,

te=teo+((ap<B)?1:0)+((2<p)?1:0)

(8-463)
(8-464)

(8-465)

Rec. ITU-T H.264 (08/2021) 207

— Otherwise (chromaStyleFilteringFlag is equal to 1),
tc=tco+1 (8-466)

Let Clip1() be a function that is replaced by Cliply() when chromaEdgeFlag is equal to 0 and by Cliplc() when
chromaEdgeFlag is equal to 1.

The filtered result samples p’o and q'o are derived by:

A =Clip3(~tc, te, ((((Go—po) <<2) +(p1—01)+4)>>3)) (8-467)
p'o=Clipl(po+A) (8-468)
qo=Clipl(qo—A) (8-469)

The filtered result sample p'1 is derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and &, is less than B,

p's =p1+ Clip3(—teo, teo, (P2 + ((Po+ Qo +1)>>1) —(p1<<1))>>1) (8-470)
— Otherwise (chromasStyleFilteringFlag is equal to 1 or aj, is greater than or equal to f),

P'L=p1 (8-471)
The filtered result sample q'; is derived as follows:
— If chromaStyleFilteringFlag is equal to 0 and aq is less than 3,

q'1 =01+ Clip3(—teo, teo, (G2 + ((Po+ Qo +1)>>1) —(u<<1))>>1) (8-472)
— Otherwise (chromaStyleFilteringFlag is equal to 1 or aq is greater than or equal to f3),

qd1=0 (8-473)
The filtered result samples p’, and ', are always set equal to the input samples p, and qp:

p'z = P2 (8-474)
q/2 =02 (8'475)
8.7.2.4 Filtering process for edges for bS equal to 4

Inputs to this process are the input sample values p; and q; (i = 0..3) of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, chromaStyleFilteringFlag, and the values of the threshold variables o and f for the set of
samples, as specified in clause 8.7.2.

Outputs of this process are the filtered result sample values p'i and q'; (i = 0..2) for the set of input sample values.
Let a, and aq be two threshold variables as specified in Equations 8-463 and 8-464, respectively, in clause 8.7.2.3.
The filtered result samples p’i (i = 0..2) are derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and the following condition holds,
<P && Abs(po— Q) <((a>>2)+2) (8-476)

then the variables p’o, p'1, and p'; are derived by:

Po=(p2+2%p1 +2%po +2*qo+q1 +4)>>3 (8-477)
Pr=(p2+pr+po+tqo+2)>>2 (8-478)
P2=(2*ps+3*p2+p1+po+o+4d)>>3 (8-479)

— Otherwise (chromaStyleFilteringFlag is equal to 1 or the condition in Equation 8-476 does not hold), the variables
p'o, p'1, and p'; are derived by:

Po=(2*pr+po+qu+2)>>2 (8-480)

208 Rec. ITU-T H.264 (08/2021)

p'1 =P1 (8-481)
P2 = P2 (8-482)

The filtered result samples 'i (i = 0..2) are derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and the following condition holds,
8 <P && Abs(po—qo) <((a>>2)+2) (8-483)

then the variables g'o, g'1, and q'; are derived by

Qo=(p1+2*%po +2*qo+ 2*q1 + g2 + 4) >> 3 (8-484)
q1=(po+ Qo+ qu+ge+2)>>2 (8-485)
q2=(2*qs+3*2+ 1+ Qo+ po+4)>>3 (8-486)

— Otherwise (chromaStyleFilteringFlag is equal to 1 or the condition in Equation 8-483 does not hold), the variables
g'o, 91, and q'; are derived by:

Qo=(2*Q+qo+p1+2)>>2 (8-487)

Q'1=0 (8-488)

Q'2=02 (8-489)
9 Parsing process

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in clause 7.3 is equal to ue(v), me(v),
se(v), te(v) (see clause 9.1), ce(v) (see clause 9.2), or ae(v) (see clause 9.3).

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in clause 7.3 is equal to ue(v), me(v),
se(v), or te(v). For syntax elements in clauses7.3.4 and 7.3.5, this process is invoked only when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated Exp-
Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current location
in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This
process is specified as follows:

leadingZeroBits = —1
for('b = 0; !b; leadingZeroBits++) (9-1)
b =read_bits(1)

The variable codeNum is then assigned as follows:
codeNum = 2'eadingZeroBits — 1 + read bits(leadingZeroBits) (9-2)

where the value returned from read_bits(leadingZeroBits) is interpreted as a binary representation of an unsigned integer
with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The
"prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are shown
as either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the computation of
codeNum and are shown as x; in Table 9-1, with i being in the range 0 to leadingZeroBits — 1, inclusive. Each x; can take
on values 0 or 1.

Rec. ITU-T H.264 (08/2021) 209

Table 9-1 — Bit strings with "prefix and "'suffix" bits and assignment to codeNum ranges (informative)

Bit string form Range of codeNum
1 0
0 1 xo 1.2
0 0 1 %1 Xo 3.6
0 001 x» x1 Xo 7.14
0000 1 x3 X2 X1 Xo 15..30
000001 x4 X3 X2 X1 Xo 31..62

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

Bit string codeNum

1 0
010 1
011 2
00100 3
00101 4
00110 5
00111 6
0001000 7
0001001 8
0001010 9

Depending on the descriptor, the value of a syntax element is derived as follows:
— If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

— Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the mapping
process for signed Exp-Golomb codes as specified in clause 9.1.1 with codeNum as the input.

— Otherwise, if the syntax element is coded as me(Vv), the value of the syntax element is derived by invoking the mapping
process for coded block pattern as specified in clause 9.1.2 with codeNum as the input.

— Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined
first. The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the range
is used in the derivation of the value of the syntax element value as follows:

— If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax
elements coded as ue(v).

— Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element
is given by a process equivalent to:

b = read_bits(1) (9-3)
codeNum =!b

210 Rec. ITU-T H.264 (08/2021)

9.1.1 Mapping process for signed Exp-Golomb codes
Input to this process is codeNum as specified in clause 9.1.
Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the assignment
rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element value
0 0
1 1
2 -1
3 2
4 -2
5 3
6 -3
k (1)< Ceil(k+2)

9.1.2 Mapping process for coded block pattern
Input to this process is codeNum as specified in clause 9.1.
Output of this process is a value of the syntax element coded_block_pattern coded as me(v).

Table 9-4 shows the assignment of coded_block_pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4, Intra_8x8 or Inter.

Rec. ITU-T H.264 (08/2021) 211

Table 9-4 — Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8
6 29 32
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15
12 39 47
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 44
24 28 33
25 35 34
26 37 36
27 42 40
28 44 39
29 1 43
30 2 45

212 Rec. ITU-T H.264 (08/2021)

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
31 4 46
32 8 17
33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26
39 22 28
40 25 23
41 32 27
42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 4 4
(b) ChromaArrayType is equal to 0 or 3
codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
0 15 0
1 0 1
2 7 2
3 11 4
4 13 8
5 14 3
6 3 5
7 5 10
8 10 12
9 12 15

Rec. ITU-T H.264 (08/2021)

213

(b) ChromaArrayType is equal to 0 or 3

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
10 1 7
11 2 11
12 4 13
13 8 14
14 6 6
15 9 9

9.2 CAVLC parsing process for transform coefficient levels

This process is invoked for the parsing of syntax elements with descriptor equal to ce(v) in clause 7.3.5.3.2 when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels maxNumCoeff,
the luma block index luma4x4BIkldx or the chroma block index chroma4x4BIkldx, ch4x4Blkldx or cr4x4Blkldx of the
current block of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
lumadx4Blkldx or the chroma block with block index chroma4x4BIlkldx, cb4x4BIkldx or cr4x4BIkldx.

The process is specified in the following ordered steps:

1. All transform coefficient level values coeffLevel[i], with indices i ranging from 0 to maxNumCoeff — 1, in the
list coeffLevel are set equal to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff_token) and the number of trailing one
transform coefficient levels TrailingOnes(coeff_token) are derived by parsing coeff token as specified in
clause 9.2.1.

3. The following then applies:

— If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to 0, the list
coeffLevel (in which all transform coefficient level values are equal to 0) is returned and no further steps are
carried out.

— Otherwise, the following steps are carried out:

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level_prefix,
and level_suffix as specified in clause 9.2.2.

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived
by parsing total_zeros and run_before as specified in clause 9.2.3.

c. The level and run information are combined into the list coeffLevel as specified in clause 9.2.4.

9.2.1 Parsing process for total number of non-zero transform coefficient levels and number of trailing ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels maxNumCoeff,
the luma block index luma4x4Blkldx or the chroma block index chroma4x4Blkldx, cb4x4BIlkldx or cr4x4Blkldx of the
current block of transform coefficient levels.

Outputs of this process are TotalCoeff(coeff_token), TrailingOnes(coeff _token), and the variable nC.

The syntax element coeff_token is decoded using one of the six VLCs specified in the six right-most columns of Table 9-5.
Each VLC specifies both TotalCoeff(coeff_token) and TrailingOnes(coeff _token) for a given codeword coeff token.
The selection of the applicable column of Table 9-5 is determined by a variable nC. The value of nC is derived as follows:

— If the CAVLC parsing process is invoked for ChromaDCLevel, nC is derived as follows:

214 Rec. ITU-T H.264 (08/2021)

If ChromaArrayType is equal to 1, nC is set equal to —1,
Otherwise (ChromaArrayType is equal to 2), nC is set equal to —2,

Otherwise, the following ordered steps are performed:

1.

When the CAVLC parsing process is invoked for Intral6x16DCLevel, luma4x4BIkldx is set equal to 0.
When the CAVLC parsing process is invoked for Cbintral6x16DCLevel, ch4x4Blkldx is set equal to 0.

2
3. When the CAVLC parsing process is invoked for Crintral6x16DCLevel, cr4x4Blkldx is set equal to O.
4

The variables blkA and blkB are derived as follows:

If the CAVLC parsing process is invoked for Intraléx16DCLevel, Intral6x16ACLevel, or
LumalLevel4x4, the process specified in clause 6.4.11.4 is invoked with luma4x4Blkldx as the input, and
the output is assigned to mbAddrA, mbAddrB, lumadx4BIkldxA, and luma4x4BIkldxB. The 4x4 luma
block specified by mbAddrA\lumadx4BIkIdxA is assigned to blkA, and the 4x4 luma block specified by
mbAddrB\luma4x4BIkldxB is assigned to blkB.

Otherwise, if the CAVLC parsing process is invoked for Cbintral6x16DCLevel, Cbintral6x16ACLevel,
or CbLevel4x4, the process specified in clause 6.4.11.6 is invoked with cbh4x4BIKkldx as the input, and
the output is assigned to mbAddrA, mbAddrB, ch4x4BIkldxA, and ch4x4BlkldxB. The 4x4 Cb block
specified by mbAddrA\cb4x4BIKkIdxA is assigned to blkA, and the 4x4 Cb block specified by
mbAddrB\ch4x4BIkldxB is assigned to blkB.

Otherwise, if the CAVLC parsing process is invoked for Crintral6x16DCLevel, Crintral6x16ACLevel,
or CrLevel4x4, the process specified in clause 6.4.11.6 is invoked with cr4x4Blkldx as the input, and the
output is assigned to mbAddrA, mbAddrB, cr4x4BlkldxA, and cr4x4BlkldxB. The 4x4 Cr block
specified by mbAddrA\cr4x4BIkIdxA is assigned to blkA, and the 4x4 Cr block specified by
mbAddrB\cr4x4BlkldxB is assigned to blkB.

Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in
clause 6.4.11.5 is invoked with chroma4x4Blkldx as input, and the output is assigned to mbAddrA,
mbAddrB, chromadx4BlkldxA, and chromad4x4BIkldxB. The 4x4 chroma block specified by
mbAddrA\iCbCr\chroma4x4BIkldxA is assigned to blkA, and the 4x4 chroma block specified by
mbAddrB\iCbCr\chroma4x4BIkldxB is assigned to blkB.

5. The variable availableFlagN with N being replaced by A and B is derived as follows:

If any of the following conditions are true, availableFlagN is set equal to 0:
— mbAddrN is not available,

— the current macroblock is coded wusing an Intra macroblock prediction mode,
constrained_intra_pred_flag is equal to 1, mbAddrN is coded using an Inter macroblock prediction
mode, and slice data partitioning is in use (nal_unit_type is in the range of 2 to 4, inclusive).

Otherwise, availableFlagN is set equal to 1.

6. For N being replaced by A and B, when availableFlagN is equal to 1, the variable nN is derived as follows:

If any of the following conditions are true, nN is set equal to O:
— The macroblock mbAddrN has mb_type equal to P_Skip or B_SKip,

— The macroblock mbAddrN has mb_type not equal to I_PCM and all AC residual transform
coefficient levels of the neighbouring block blkN are equal to 0 due to the corresponding bit of
CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0.

Otherwise, if mbAddrN is an I_PCM macroblock, nN is set equal to 16.

Otherwise, nN is set equal to the value TotalCoeff(coeff_token) of the neighbouring block bIkN.

NOTE 1 - The values nA and nB that are derived using Total Coeff(coeff_token) do not include the DC transform
coefficient levels in Intra_16x16 macroblocks or DC transform coefficient levels in chroma blocks, because these
transform coefficient levels are decoded separately. When the block above or to the left belongs to an Intra_16x16
macroblock, nA or nB is the number of decoded non-zero AC transform coefficient levels for the adjacent 4x4
block in the Intra_16x16 macroblock. When the block above or to the left is a chroma block, nA or nB is the
number of decoded non-zero AC transform coefficient levels for the adjacent chroma block.

NOTE 2 — When parsing for Intral6x16DCLevel, Cbintral6x16DCLevel, or Crintraléx16DCLevel, the values
nA and nB are based on the number of non-zero transform coefficient levels in adjacent 4x4 blocks and not on the
number of non-zero DC transform coefficient levels in adjacent 16x16 blocks.

Rec. ITU-T H.264 (08/2021) 215

7.

When maxNumCoeff is equal to 15,

The variable nC is derived as follows:

— If availableFlagA is equal to 1 and availableFlagB is equal to 1, the variable nC is set equal to

(nA+nB+1)>>1.

— Otherwise, if availableFlagA is equal to 1 (and availableFlagB is equal to 0), the variable nC is set equal

to nA.

— Otherwise, if availableFlagB is equal to 1 (and availableFlagA is equal to 0), the variable nC is set equal

to nB.

— Otherwise (availableFlagA is equal to 0 and availableFlagB is equal to 0), the variable nC is set equal

to 0.

TotalCoeff(coeff_token) resulting from decoding coeff_token shall not be equal to 16.

it is a requirement of bitstream conformance that the value of

Table 9-5 — coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)

g; %;. 0<=nC<2 2<=nC<4 4<=nC<8 | 8<=nC | nC==-1 nC==-2
0 0 1 11 1111 000011 | 01 1
0 1 0001 01 0010 11 0011 11 000000 | 000111 | 0001 111
1 1 01 10 1110 000001 | 1 01
0 2 0000 0111 0001 11 0010 11 000100 | 000100 | 0001 110
1 2 0001 00 00111 01111 000101 | 000110 | 0001 101
2 2 001 011 1101 000110 | 001 001
0 3 0000 0011 1 0000 111 0010 00 001000 | 000011 | 000000111
1 3 0000 0110 0010 10 01100 001001 | 0000011 | 0001 100
2 3 0000 101 0010 01 01110 001010 | 0000010 | 0001 011
3 3 0001 1 0101 1100 001011 | 000101 | 00001
0 4 0000 0001 11 0000 0111 0001 111 001100 | 000010 | 000000110
1 4 0000 0011 0 0001 10 01010 001101 | 00000011 | 0000 0010 1
2 4 0000 0101 0001 01 01011 001110 | 00000010 | 0001 010
3 4 0000 11 0100 1011 001111 | 0000000 | 0000 01
0 5 0000 0000 111 0000 0100 0001 011 010000 | - 0000 0001 11
1 5 0000 0001 10 0000 110 01000 010001 | - 0000 0001 10
2 5 0000 0010 1 0000 101 0100 1 010010 | - 0000 0010 0
3 5 0000 100 00110 1010 010011 | - 0001 001
0 6 0000 0000 0111 1 0000 0011 1 0001 001 010100 | - 0000 0000 111
1 6 0000 0000 110 0000 0110 0011 10 010101 | - 0000 0000 110
2 6 0000 0001 01 0000 0101 0011 01 010110 | - 0000 0001 01
3 6 0000 0100 0010 00 1001 010111 | - 0001 000
0 7 0000 0000 0101 1 0000 0001 111 0001 000 011000 | - 0000 0000 0111
1 0000 0000 0111 0 0000 0011 0 0010 10 011001 | - 0000 0000 0110
2 7 0000 0000 101 0000 0010 1 0010 01 011010 | - 0000 0000 101

216 Rec. ITU-T H.264 (08/2021)

Table 9-5 — coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)

gc | £5
Q3 8%
£0 | 82 0<=nC<2 2<=nC<4 4<=nC<8 |8<=nC|nC==-1| nC==-2
3 7 0000 00100 0001 00 1000 011011 | - 0000 0001 00
0 8 0000 0000 01000 0000 0001 011 0000 1111 011100 | - 0000 0000 00111
1 8 0000 0000 01010 0000 0001 110 0001 110 011101 | - 0000 0000 0101
2 8 0000 000001101 0000 0001 101 0001 101 011110 | - 0000 0000 0100
3 8 0000 0001 00 0000 100 01101 011111 | - 0000 0000 100
0 9 0000 0000 001111 0000 0000 1111 0000 1011 100000 | - -
1 9 0000 0000 001110 0000 0001 010 0000 1110 100001 | - -
2 9 0000 0000 0100 1 0000 0001 001 0001 010 100010 | - -
3 9 0000 0000 100 0000 00100 0011 00 100011 | - -
0 10 0000 0000 0010 11 0000 0000 1011 000001111 100100 | - -
1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 100101 | - -
2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 100110 | - -
3 10 0000 0000 01100 0000 0001 100 0001 100 100111 | - -
0 11 0000 0000 0001 111 0000 0000 1000 000001011 101000 | - -
1 11 0000 0000 0001 110 0000 0000 1010 000001110 101001 | - -
2 11 0000 0000 001001 0000 0000 1001 0000 1001 101010 | - -
3 11 0000 0000 0011 00 0000 0001 000 0000 1100 101011 | - -
0 12 0000 0000 0001 011 0000 0000 01111 0000 0100 0 101100 | - -
1 12 0000 0000 0001 010 0000 0000 01110 000001010 101101 | - -
2 12 0000 0000 0001 101 0000 000001101 000001101 101110 | - -
3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 101111 | - -
0 13 0000 0000 00001111 | 0000 000001011 0000001101 | 110000 | - -
1 13 0000 0000 0000 001 0000 0000 01010 0000 00111 110001 | - -
2 13 0000 0000 0001 001 0000 0000 0100 1 0000 0100 1 110010 | - -
3 13 0000 0000 0001 100 0000 0000 01100 000001100 110011 | - -
0 14 0000 0000 00001011 | 0000 000000111 0000001001 | 110100 | - -
1 14 0000 0000 00001110 | 0000 0000001011 | 0000001100 | 110101 | - -
2 14 0000 0000 0000 1101 | 0000 0000 00110 0000 001011 | 110110 | - -
3 14 0000 0000 0001 000 0000 0000 01000 0000 001010 | 110111 | - -
0 15 0000 0000 0000 0111 | 0000 0000 001001 | 0000000101 | 111000 | - -
1 15 0000 0000 00001010 | 0000 0000 001000 | 0000001000 | 111001 | - -
2 15 0000 0000 0000 1001 | 0000 0000001010 | OOOO0OO00111 | 111010 | - -
3 15 0000 0000 0000 1100 | 0000 0000 00001 0000000110 | 111011 | - -
0 16 0000 0000 0000 0100 | 0000 0000 000111 | 0000000001 | 1111200 | - -

Rec. ITU-T H.264 (08/2021) 217

Table 9-5 — coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)

g | £5
[«§)
QS QS
E:I %:l 0<=nC<2 2<=nC<4 4<=nC<8 [8<=nC | nC==-1 nC==-2
Eg | 28
1 16 0000 0000 0000 0110 | 0000 0000 000110 | 0000000100 | 111101 | - -
2 16 0000 0000 0000 0101 | 0000 0000000101 | OOOOOOC0O011 | 111110 | - -
3 16 0000 0000 0000 1000 | 0000 0000 0001 00 | 0000000010 | 111111 | - -

9.2.2 Parsing process for level information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
Total Coeff(coeff_token), and the number of trailing one transform coefficient levels TrailingOnes(coeff_token).

Output of this process is a list with name levelVVal containing transform coefficient levels.

Initially an index i is set equal to 0. Then, when TrailingOnes(coeff_token) is not equal to 0, the following ordered steps
are applied TrailingOnes(coeff_token) times to decode the trailing one transform coefficient levels:

1. A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as follows:
— Iftrailing_ones_sign_flag is equal to 0, levelVal[i] is set equal to 1.
— Otherwise (trailing_ones_sign_flag is equal to 1), levelVal[i] is set equal to —1.
2. Theindex i is incremented by 1.
Then, the variable suffixLength is initialized as follows:

— If TotalCoeff(coeff_token) is greater than 10 and TrailingOnes(coeff_token) is less than 3, suffixLength is set
equal to 1.

— Otherwise (TotalCoeff(coeff_token) is less than or equal to 10 or TrailingOnes(coeff_token) is equal to 3),
suffixLength is set equal to O.

Then, when TotalCoeff(coeff_token) — TrailingOnes(coeff_token) is not equal to 0, the following ordered steps are
applied TotalCoeff(coeff_token) — TrailingOnes(coeff_token) times to decode the remaining non-zero level values:

1. The syntax element level _prefix is decoded as specified in clause 9.2.2.1.

2. The variable levelSuffixSize is set as follows:
— If level_prefix is equal to 14 and suffixLength is equal to O, levelSuffixSize is set equal to 4.
— Otherwise, if level_prefix is greater than or equal to 15, levelSuffixSize is set equal to level _prefix — 3.
— Otherwise, levelSuffixSize is set equal to suffixLength.

3. The syntax element level_suffix is decoded as follows:

— If levelSuffixSize is greater than 0, the syntax element level_suffix is decoded as unsigned integer
representation u(v) with levelSuffixSize bits.

— Otherwise (levelSuffixSize is equal to 0), the syntax element level_suffix is inferred to be equal to 0.
The variable levelCode is set equal to (Min(15, level_prefix) << suffixLength) + level_suffix.
When level_prefix is greater than or equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.

When level_prefix is greater than or equal to 16, levelCode is incremented by (1<<(level_prefix — 3)) — 4096.

N o g &

When the index i is equal to TrailingOnes(coeff_token) and TrailingOnes(coeff_token) is less than 3, levelCode
is incremented by 2.

8. The variable levelVal[i] is derived as follows:

— If levelCode is an even number, levelVal[i] is set equal to (levelCode +2) >> 1.

218 Rec. ITU-T H.264 (08/2021)

— Otherwise (levelCode is an odd number), levelVal[i] is set equal to (—levelCode — 1) >> 1.
9. When suffixLength is equal to O, suffixLength is set equal to 1.

10. When the absolute value of levelVal[i] is greater than (3 << (suffixLength — 1)) and suffixLength is less than 6,
suffixLength is incremented by 1.

11. The index i is incremented by 1.

9.2.2.1 Parsing process for level_prefix
Inputs to this process are bits from slice data.
Output of this process is level_prefix.

The parsing process for this syntax element consists in reading the bits starting at the current location in the bitstream up
to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is specified
as follows:

leadingZeroBits = —1

for(b = 0; !b; leadingZeroBits++) (9-4)
b =read_bits(1)

level_prefix = leadingZeroBits

Table 9-6 illustrates the codeword table for level_prefix.

NOTE — The value of level_prefix is constrained to not exceed 15 in bitstreams conforming to the Baseline, Constrained Baseline,
Main, and Extended profiles, as specified in clauses A.2.1, A.2.1.1, A.2.2, and A.2.3, respectively. In bitstreams conforming to other
profiles, it has been reported that the value of level_prefix cannot exceed 11 + bitDepth with bitDepth being the variable BitDepthy
for transform coefficient blocks related to the luma component and being the variable BitDepthc for transform coefficient blocks
related to a chroma component.

Table 9-6 — Codeword table for level_prefix (informative)

level _prefix | bit string
0 1
1 01
2 001
3 0001
4 0000 1
5 0000 01
6 0000 001
7 0000 0001
8 0000 0000 1
9 0000 0000 01
10 0000 0000 001
11 0000 0000 0001
12 0000 0000 0000 1
13 0000 0000 0000 01
14 0000 0000 0000 001
15 0000 0000 0000 0001

Rec. ITU-T H.264 (08/2021) 219

9.2.3 Parsing process for run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff_token), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient levels
called runVal.

Initially, an index i is set equal to 0.
The variable zerosLeft is derived as follows:

— If the number of non-zero transform coefficient levels TotalCoeff(coeff _token) is equal to the maximum number of
non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

— Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is less than the maximum
number of non-zero transform coefficient levels maxNumCoeff), total_zeros is decoded and zerosLeft is set equal to

its value.

The variable tzVicIndex is set equal to TotalCoeff(coeff token).
The VLC used to decode total _zeros is derived as follows:
— If maxNumCoeff is equal to 4, one of the VLCs specified in Table 9-9 (a) is used.
— Otherwise, if maxNumCoeff is equal to 8, one of the VVLCs specified in Table 9-9 (b) is used.
— Otherwise (maxNumCoeff is not equal to 4 and not equal to 8), VLCs from Tables 9-7 and 9-8 are used.
The following ordered steps are then performed TotalCoeff(coeff token) — 1 times:

1. The variable runVal[i] is derived as follows:

— If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. runVal[i]
is set equal to run_before.

— Otherwise (zerosLeft is equal to 0), runVal[i] is set equal to O.

2. The value of runVal[i] is subtracted from zerosLeft and the result is assigned to zerosLeft. It is a requirement of
bitstream conformance that the result of the subtraction shall be greater than or equal to 0.

3. Theindex i is incremented by 1.

Finally the value of zerosLeft is assigned to runVal[i .

220 Rec. ITU-T H.264 (08/2021)

Table 9-7 — total_zeros tables for 4x4 blocks with tzVicindex 1 to 7

total_zeros tzVicIndex
1 2 3 4 5 6 7
0 1 111 0101 00011 | 0101 | 0000 01 | 0000 01
1 011 110 111 111 0100 00001 | 00001
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 00011 0101 0011 101 101 100 11
6 00010 0100 100 100 100 011 010
7 0000 11 0011 011 0011 | 011 010 0001
8 0000 10 0010 0010 011 0010 0001 001
9 0000 011 00011 | 00011 | 0010 00001 | 001 0000 00
10 0000 010 00010 | 00010 | 00010 | 0001 | 000000 | -
11 0000 0011 | 0000 11 | 000001 | 00001 | 000OO | - -
12 0000 0010 | 0000 10 | 00001 | 00000 | - - -
13 0000 00011 | 000001 | 0000 QO | - - - -
14 0000 00010 | 000000 | - - - - -
15 000000001 | - - - - - -

Table 9-8 — total_zeros tables for 4x4 blocks with tzVIcIndex 8 to 15

total_zeros tzVicIndex
8 9 10 11 12 13 14 | 15

0 0000 01 | 0000 01 | 0000 1 | 0000 | 0000 | 000 | 00 | O
1 0001 000000 | 00000 | 0001 | OOO1 | 001 |01 |1
2 00001 | 0001 001 001 |01 1 1 -
3 011 11 11 010 1 01 | - -
4 11 10 10 1 001 | - - -
5 10 001 01 011 | - - - |-
6 010 01 0001 | - - - - -
7 001 00001 | - - - - - -
8 000000 | - - - - - - -

Rec. ITU-T H.264 (08/2021)

221

Table 9-9 —total_zeros tables for chroma DC 2x2 and 2x4 blocks

(a) Chroma DC 2x2 block (4:2:0 chroma sampling)

tzVicIndex
total_zeros
1 2 3
0 1 1 1
1 01 01 0
2 001 00 -
3 000 - -

(b) Chroma DC 2x4 block (4:2:2 chroma sampling)

tzVicIndex
total_zeros

1 2 3 4 5 6 7
0 1 000 000 110 00 00 0
1 010 01 001 00 01 01 1
2 011 001 01 01 10 1 -
3 0010 100 10 10 11 - -
4 0011 101 110 111 - - -
5 0001 110 111 - - - -
6 00001 | 111 - - - - -
7 00000 | - - - - - -

222 Rec. ITU-T H.264 (08/2021)

Table 9-10 — Tables for run_before

run_before | zerosLeft
112 |3 |4 5 6 >6
0 1|1 11 | 11 11 11 111
1 0011010 |10 | 000 | 110
2 -|(00|01]01 011 | 001 | 101
3 - |- | 00| 001|010 | 011 | 100
4 -|- |- |000|001]|010| 011
5 - |- - - 000 | 101 | 010
6 -l- - |- - 100 | 001
7 -l - |- - - 0001
8 - - - - - 00001
9 -l- - |- - - 000001
10 -l - |- - - 0000001
11 - |- - - - - 00000001
12 - l- - - - - 000000001
13 - |- - - - - 0000000001
14 S - | - | 00000000001

9.2.4 Combining level and run information

Input to this process are a list of transform coefficient levels called levelVal, a list of runs called runVal, and the number
of non-zero transform coefficient levels TotalCoeff(coeff _token).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to —1 and an index i is set equal to TotalCoeff(coeff token) — 1. The following ordered
steps are then applied TotalCoeff(coeff _token) times:

1. coeffNum is incremented by runVal[i] + 1.
2. coeffLevel[coeffNum] is set equal to levelVal[i].

3. The index i is decremented by 1.

9.3 CABAC parsing process for slice data

This process is invoked when parsing syntax elements with descriptor ae(v) in clauses 7.3.4 and 7.3.5 when
entropy_coding_mode_flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in clause 7.3.4, the initialization process of the CABAC parsing process
is invoked as specified in clause 9.3.1.

The parsing of syntax elements proceeds as follows.
For each requested value of a syntax element a binarization is derived as described in clause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as described
in clause 9.3.3.

Rec. ITU-T H.264 (08/2021) 223

For each bin of the binarization of the syntax element, which is indexed by the variable binldx, a context index ctxldx is
derived as specified in clause 9.3.3.1.

For each ctxldx the arithmetic decoding process is invoked as specified in clause 9.3.3.2.

The resulting sequence (bo..byiniax) Of parsed bins is compared to the set of bin strings given by the binarization process
after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value is assigned
to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value of
mb_type is equal to I_PCM, the decoding engine is initialized after the decoding of any pcm_alignment_zero_bit and all
pcm_sample_luma and pcm_sample_chroma data as specified in clause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax element.

224 Rec. ITU-T H.264 (08/2021)

< CABACParsing(SE) >

First SE in Yes
slice ? L 4
Initialization of
context variables
v
NO
Initialization of
decoding engine
< |
v
Get Binarization(SE)
L2
binldx = -1
le
v
binldx++
v
Get ctxldx(binldx)
v No
DecodeBin(ctxIdx)
(b(]""‘bbinldx) in
Binarization(SE) ?
SE == mb type
_typ Yes

&& Value(bO’”"bbianx)::
I PCM?

v

Initialization of

decoding engine

No

&
<
y

A

‘ Done '

Figure 9-1 — lllustration of CABAC parsing process for a syntax element SE (informative)

H.264(09)_F9-1

9.3.1 Initialization process
Outputs of this process are initialized CABAC internal variables.
The processes in clauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of aslice in clause 7.3.4.

The process in clause 9.3.1.2 is also invoked after decoding any pcm_alignment_zero_bit and all pcm_sample_luma and
pcm_sample_chroma data for a macroblock of type I_PCM.
9.3.1.1 Initialization process for context variables

Outputs of this process are the initialized CABAC context variables indexed by ctxldx.

Rec. ITU-T H.264 (08/2021) 225

Tables 9-12 to 9-33 contain the values of the variables n and m used in the initialization of context variables that are
assigned to all syntax elements in clauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateldx and valMPS are initialized.

NOTE 1 — The variable pStateldx corresponds to a probability state index and the variable valMPS corresponds to the value of the
most probable symbol as further described in clause 9.3.3.2.

The two values assigned to pStateldx and valMPS for the initialization are derived from SliceQPy, which is derived in
Equation 7-30. Given the two table entries (m, n), the initialization is specified by the following pseudo-code process:

preCtxState = Clip3(1, 126, ((m * Clip3(0, 51, SliceQPv))>>4) +n)
if(preCtxState <= 63) {
pStateldx = 63 — preCtxState

valMPS =0 (9-5)
}else {

pStateldx = preCtxState — 64

valMPS =1

}

In Table 9-11, the ctxldx for which initialization is needed for each of the slice types are listed. Also listed is the table
number that includes the values of m and n needed for the initialization. For P, SP and B slice type, the initialization
depends also on the value of the cabac_init_idc syntax element. Note that the syntax element names do not affect the
initialization process.

226 Rec. ITU-T H.264 (08/2021)

Table 9-11 — Association of ctxldx and syntax elements for each slice type in the initialization process

Slice type
Syntax element Table
SI | P, SP B
. Table 9-13
. mb_skip_flag Table 9-14 11..13 24.26
slice_data()
mb_field_decoding_flag Table 9-18 70..72 70..72 70..72 70..72
Table 9-12
mb_type Table 9-13 0.10 3.10 14..20 27.35
Table 9-14
transform_size_8x8 flag Table 9-16 na 399..401 399..401 399..401
macroblock_layer()
coded_block_pattern (luma) Table 9-18 73.76 73.76 73..76 73.76
coded_block_pattern (chroma) Table 9-18 77..84 77..84 77..84 77..84
mb_gp_delta Table 9-17 60..63 60..63 60..63 60..63
prev_intradx4_pred_mode_flag Table 9-17 68 68 68 68
rem_intradx4_pred_mode Table 9-17 69 69 69 69
mb_pred() prev_intra8x8_pred_mode_flag Table 9-17 na 68 68 68
rem_intra8x8_pred_mode Table 9-17 na 69 69 69
intra_chroma_pred_mode Table 9-17 64..67 64..67 64..67 64..67
ref_idx_10 Table 9-16 54..59 54..59
ref_idx_11 Table 9-16 54..59
mb,_pred() and mvd_I0[][][0] Table 9-15 40..46 40..46
sub_mb_pred() mvd_IL[][1[0] Table 9-15 40..46
mvd_IO[J[1[1] Table 9-15 47.53 47.53
mvd_11[][1[1] Table 9-15 47.53
b_mb_pred() b_mb_type[] Table 9-13 21.23 36.39
sub_mb_pre: sub_mb_type . .
-mo-P -h-P Table 9-14

Rec. ITU-T H.264 (08/2021)

227

Table 9-11 — Association of ctxldx and syntax elements for each slice type in the initialization process

Slice type
Syntax element Table
Sl | P, SP B
Table 9-18 85..104 85..104 85..104 85..104
coded_block_flag Table 9-25 460..483 460..483 460..483 460..483
Table 9-33 1012..1023 1012..1023 | 1012..1023
Table 9-19 105..165 105..165 105..165 105..165
Table 9-22 277..337 277..337 277..337 277..337
Table 9-24 402..416 402..416 402..416
significant_coeff_flag[] Table 9-24 436..450 436..450 436..450
- - Table 9-26 484.571 484..571 484.571
Table 9-30 776..863 776..863 776..863
Table 9-28 660..689 660..689 660..689
Table 9-29 718..747 718..747 718..747
residual_block_cabac() Table 9-20 166..226 166..226 166..226 166..226
Table 9-23 338..398 338..398 338..398 338..398
Table 9-24 417..425 417..425 417..425
last_significant_coeff flag|] Table 9-24 451..459 451..459 451..459
= - - Table 9-27 572..659 572..659 572..659
Table 9-31 864..951 864..951 864..951
Table 9-28 690..707 690..707 690..707
Table 9-29 748..765 748..765 748..765
Table 9-21 227..275 227..275 227..275 227..275
Table 9-24 426..435 426..435 426..435
coeff_abs_level_minus1[] Table 9-32 952..1011 952..1011 952..1011
Table 9-28 708..717 708..717 708..717
Table 9-29 766..775 766..775 766..775

NOTE 2 — ctxldx equal to 276 is associated with the end_of_slice_flag and the bin of mb_type, which specifies the I_PCM
macroblock type. The decoding process specified in clause 9.3.3.2.4 applies to ctxldx equal to 276. This decoding process, however,
may also be implemented by using the decoding process specified in clause 9.3.3.2.1. In this case, the initial values associated with
ctxldx equal to 276 are specified to be pStateldx = 63 and valMPS = 0, where pStateldx = 63 represents a non-adapting probability
state.

Table 9-12 — Values of variables m and n for ctxldx from 0 to 10

Initialization ctxldx

variables 0 1 2 3 4 5 6 7 8 9 10
m 20 2 3 20 2 3 28 | -23 | -6 -1 7
n -15 | 54 74 | -15 | 54 74 | 127 | 104 | 53 54 51

Table 9-13 — Values of variables m and n for ctxldx from 11 to 23

Value of Initialization otxldx
cabac_init idc | - variables | | 0 | g3 | 14 | 15 [16 | 17 | 18 | 19 | 20 | 21 | 2 | 2
0 m 23 | 28 | 21| 1 o | 87| 5 | -3 11| 1 | 12| 4| 17
n B | 2 0 9 | 49 | 118 | 57 | 78 | 65 | 62 | 49 | 73 | 50
1 m 2 | 3 | 16| 2| 4 | 20| 2 | -6 |-13]| 5 9 | -3 | 10
n 25 | 0 0 9 | 41 |18 | 65 | 71 | 79 | 52 | 50 | 70 | 54
2 m 20 | 25 | 14 | -10 | 3 | 27| 26 | -4 | 24 | 5 6 | -17 | 14
n 6 | o0 o | 51 | 62 | 99 | 16 | & | 102 | 57 | 57 | 73 | 57

228 Rec. ITU-T H.264 (08/2021)

Table 9-14 — Values of variables m and n for ctxldx from 24 to 39

Value of Initializatio ctxldx
cabac_init idc | nvariables | o, | o5 | 56 | 57 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 30
0 m 18| 9 202 |16]° 764 52 1 ;1 11 1| -6 }1 % | 9
n 64 | 43 | 0 | 67 | 90 | 104 | 127 | 104 | 67 | 78 | 65 | 62 | 86 | 95 | 61 | 45
! m 26 | 10 | 40 | 57 | 4| %® *54 ;1 4 | -6 ;1 5 | 6 ;1 o | 8
n 34 | 2| 0 2 | 3 | 69 | 127|100 | 76 | 71 | 79 | 52 | 69 | 90 | 52 | 43
2 m 20 |20 |2 [sa |3 | 2| D7 24|55 | 6])| 6]| 4
n 4 | 10 | 0 O | 42 | 97 | 127 | 117 | 74 | 85 | 102 | 57 | 93 | 88 | 44 | 55
Table 9-15 — Values of variables m and n for ctxldx from 40 to 53
Value of Initialization ctxldx
cabac_init idc | variables |, |y | 4o 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
0 m -3 | -6 | 11 6 7 -5 2 0 -3 | -10 | 5 4 -3 0
n 69 81 96 55 | 67 | 86 | 88 58 | 76 9 | 54 | 69 81 | 88
1 m -2 | -5 | -10 2 2 | 3| -3 1 -3 | -6 0 -3 | -7 | -5
n 69 82 96 59 | 75 | 87 | 100 | 56 | 74 | 8 | 59 | 81 86 | 95
2 m -11 | -15 | -21 | 19 | 20 4 6 1 -5 | -13 | 5 6 -3 | 1
n 89 | 103 | 116 | 57 | 58 | 84 | 9 63 | 85 | 106 | 63 | 75 | 90 | 101
Table 9-16 — Values of variables m and n for ctxldx from 54 to 59, and 399 to 401
ctxldx
Value of cabac_init_idc | Initialization variables
54 | 55 | 56 | 57 | 58 | 59 | 399 | 400 | 401
I slices m na|na|na| na |nafjnaj 31 31 25
n na | na | na na na | na| 21 31 50
0 m 7| -5|-4| -5 |-7| 1] 12| 11| 14
n 67 | 74 | 74| 80 | 72 |58 | 40 | 51 | 59
1 m -1|-1|1]|-=2|-5|0|25] 21| 21
n 66 | 77 | 70 | 86 | 72 | 61 | 32 | 49 | 54
2 m 3 |-4|-—2|-12|-7| 1| 21|19 | 17
n 55 | 79 | 75| 97 |50 | 60 | 33 | 50 | 61
Rec. ITU-T H.264 (08/2021) 229

230

Table 9-17 — Values of variables m and n for ctxldx from 60 to 69

Initialization ctxldx

variables 60 61 62 63 64 65 66 67 68 69
m 0 0 0 0 -9 4 0 -7 13 3
n 41 63 63 63 83 86 97 72 41 | e2

Table 9-18 — Values of variables m and n for ctxldx from 70 to 104

I and SI Value of cabac_init_idc Value of cabac_init_idc

slices - : ar_1d S -
ctxldx 1 2 cxldx | S1ees 0 1
m n m n m n m n m n m n m n m n
70 0 11 0 45 13 15 7 34 88 -11 | 115 | -13 | 108 | —4 92 5 78
71 1 55 —4 78 7 51 -9 88 89 -12 | 63 -3 46 0 39 -6 55
72 0 69 -3 96 2 80 | —20 | 127 90 -2 68 -1 65 0 65 4 61
73 =17 | 127 | =27 | 126 | -39 | 127 | —-36 | 127 91 -15 | 84 -1 57 | -15 | 84 | -14 | 83
74 -13 102 | -28 | 98 | -18 | 91 | -17 | 91 92 -13 | 104 | -9 93 | =35 | 127 | -37 | 127
75 0 82 | 25| 101 | -17 | 96 | -14 | 95 93 -3 70 -3 74 -2 73 -5 79
76 -7 74 | 23 | 67 | —26 | 81 | -25 | 84 94 -8 93 -9 92 | —-12 | 104 | -11 | 104
7 -21|107 | -28 | 82 | -35 | 98 | -25 | 86 95 -10 | 90 -8 87 -9 91 | -11 | 91
78 =27 | 127 | -20 | 94 | —24 | 102 | -12 | 89 96 -30 | 127 | —23 | 126 | —31 | 127 | —30 | 127
79 -31| 127 | -16 | 83 | -23 | 97 | -17 | 91 97 -1 74 5 54 3 55 0 65
80 —24 | 127 | =22 | 110 | —27 | 119 | -31 | 127 98 -6 97 6 60 7 56 -2 79
81 =18 | 95 | 21| 91 | 24| 99 | -14 | 76 99 =7 91 6 59 7 55 0 72
82 =27 | 127 | -18 | 102 | —21 | 110 | —18 | 103 100 -20 | 127 6 69 8 61 -4 92
83 -21| 114 | -13 | 93 | -18 | 102 | -13 | 90 101 -4 56 -1 48 -3 53 -6 56
84 =30 | 127 | =29 | 127 | -36 | 127 | —37 | 127 102 -5 82 0 68 0 68 3 68
85 =17 | 123 | -7 92 0 80 11 80 103 =7 76 -4 69 =7 74 -8 71
86 -12 | 115 | -5 89 -5 89 5 76 104 —22 | 125 | -8 88 -9 88 | -13 | 98
87 -16 | 122 | -7 96 -7 94 2 84

Rec. ITU-T H.264 (08/2021)

Table 9-19 — Values of variables m and n for ctxldx from 105 to 165

I and Sl Value of cabac_init_idc | and SI
slices ?Iices
ctxldx 0 1 2 ctxldx 0 1 2

Value of cabac_init_idc

105 -7 |1 93 | -2 | 8 |-13 103 | -4 | 86 136 -13 | 101 5 |53 0 58| -5 | 75

106 -11 | 87 -6 78 | -13 | 91 | -12 | 88 137 -13 | 91 -2 |61] -1 |60 | -8 80

107 -3 | 77 | -1 |7 |-9 |8 | 5|82 138 -12 | %4 0 56| -3 | 61|21 83

108 -5 71 =7 77 | -14] 92 | -3 |72 139 -10 | 88 0 56| -8 | 67 | 21 | 64

109 -4 | 63 2 54 | -8 | 76 | -4 | 67 140 -16 | 84 | -13 | 63 | -25 | 84 | -13 | 31

110 -4 68 5 50 | -12 | 87 -8 | 72 141 -10 | 86 -5 |60 | -14 |74 | 25| 64

111 -12 | 84 | -3 68 | —23 | 110 | —16 | 89 142 -7 83 -1 62| -5 |65 |-29| 9%

112 =7 62 1 50 | -24 | 105 | -9 | 69 143 -13 | 87 4 57 5 52 9 75

113 =7 65 6 42 | -10 | 78 | -1 | 59 144 -19 | 94 | -6 | 69 2 57 | 17 63

114 8 61 -4 | 81 | —20 | 112 5 66 145 1 70 4 57 0 61 | -8 74

115 5 56 1 63 | -17 | 99 4 57 146 0 72 14 39| 9 |69 | -5 35

116 -2 66 -4 70 | -78 | 127 | 4 | 71 147 -5 74 4 51| -11 |70 | -2 27

117 1 64 0 67 | -70 | 127 | -2 | 71 148 18 59 13 | 68| 18 | 55 | 13 91

118 0 61 2 57 | =50 | 127 2 58 149 -8 | 102 3 64 | -4 |71 3 65

119 -2 78 | -2 76 | -46 | 127 | -1 | 74 150 —-15 | 100 1 61 0 58 | -7 69

120 1 50 11 35 —4 66 | -4 | 44 151 0 95 9 63 7 61 8 7

121 7 52 4 64 | -5 78 | -1 | 69 152 —4 75 7 50 9 41 | -10 | 66

122 10 35 1 61 | 4 | 71 0 62 153 2 72 16 | 39| 18 | 25| 3 62

123 0 44 11 35 -8 72 | -7 |51 154 -11 | 75 5 44 9 32| -3 68

124 11 38 18 25 2 59 | -4 | 47 155 -3 71 4 52 5 43 | -20 | 81

125 1 45 12 24 | -1 55 | -6 | 42 156 15 46 11 | 48 9 47 0 30

126 0 46 13 29 -7 70 | -3 |41 157 -13 | 69 -5 | 60 0 44 1 7

127 5 44 13 36 -6 75 | -6 | 53 158 0 62 -1 |59 0 51 | -3 23

128 31 17 | -10 | 93 | -8 | 89 8 76 159 0 65 0 59 2 46 | 21 | 74

129 1 50 | =7 | 73 | -34 | 119 | -9 | 78 160 21 37 22 | 33| 19 | 38| 16 66

130 7 50 | -2 73 -3 75 | -11 | 83 161 -15 | 72 5 44 | -4 | 66 | —23 | 124

131 28 19 13 46 32 20 9 52 162 9 57 14 | 43| 15 | 38 | 17 37

132 16 33 9 49 30 22 0 67 163 16 54 | -1 | 78| 12 |42 | 44 | —18

133 14 62 —7 | 100 | 44 | 127 | -5 | 90 164 0 62 0 60 9 34 | 50 | —34

134 —13 | 108 9 53 0 54 1 67 165 12 72 9 69 0 89 | —22 | 127

135 —15 | 100 2 53 -5 61 | -15 | 72

Rec. ITU-T H.264 (08/2021) 231

Table 9-20 — Values of variables m and n for ctxldx from 166 to 226

I and Sl Value of cabac_init_idc Value of cabac_init_idc

slices ! ;?geSSI
ctxldx 0 1 2 ctxldx 0 1 2
m n m | n m n m n m n m n m n m n

166 24 0 11 | 28 4 45 4 39 197 26 | 17 | 28 3 36 | 28| 28 -3

167 15 9 2 |40 | 10 28 0 42 198 30| 25|28 | 4 38 | 28| 24 10

168 8 25 3 |44 |10 | 31 7 34 199 28 | —20 | 32 0 38 | 27| 27 0

169 13 | 18 0 |49 | 33 |-11 11| 29 200 33| -23 |3 | -1 34 | -18 | 34 | -14

170 151 9 0 |46 | 52 | 43| 8 | 31 201 37| 27|30 | 6 35 | 16 | 52 | —44

171 13| 19 2 | 44| 18 15 6 37 202 33 | -23 | 30 6 34 | -14 | 39 | 24

172 10 | 37 2 | 51| 28 0 7 42 203 40 | 28 | 32 9 32 -8 19 17

173 12 | 18 0 |47 | 3 | 22| 3 40 204 38 | -17 | 31 | 19 37 -6 31 25

174 6 29 4 39| 38 | -25| 8 33 205 33 | -11] 26 | 27 35 0 36 29

175 20 | 33 2 | 62| 34 0 13 | 43 206 40 | -15 | 26 | 30 30 10 24 33

176 15| 30 6 |46 | 39 | -18 | 13| 36 207 41| -6 | 37 | 20 28 18 34 15

177 4 | 45 0 |54 | 32 |-12| 4 | 47 208 38 1 28 | 34 26 25 30 20

178 1 58 3 | 54102 | -94 | 3 55 209 41| 17 |17 | 70 29 41 22 73

179 0 62 2 | 58 0 0 2 58 210 30| -6 1 67 0 75 20 34

180 7 61 4 | 63| 5 |-15| 6 60 211 27 3 5 59 2 72 19 31

181 12| 38 6 | 51| 3 | 4| 8 44 212 26 | 22 9 67 8 7 27 44

182 11 | 45 6 | 57| 29 10 | 11| 44 213 37 | -16 | 16 | 30 14 35 19 16

183 15 | 39 7 | 53| 37 -5 | 14 | 42 214 35| 4 |18 | 32 18 31 15 36

184 11 | 42 6 [52| 51 |-29 | 7 48 215 38| 8 |18 | 35 17 35 15 36

185 13 | 44 6 | 55|39 | 9| 4| 56 216 38| 3|22 29 21 30 21 28

186 16 | 45 | 11 | 45| 52 | 34 | 4 52 217 37 3 24 | 31 17 45 25 21

187 12| 41 | 14 | 36| 69 | 58 | 13 | 37 218 38 5 23 | 38 20 42 30 20

188 10 | 49 8 |53 | 67 | 63| 9 49 219 42 0 18 | 43 18 45 31 12

189 30| 34 |18 | 44 | 5 |19 | 58 220 35| 16 | 20 | 41 27 26 27 16

190 18 | 42 7 |5 | 32 7 10 | 48 221 39| 22 | 11| 63 16 54 24 42

191 10| 55 | -3 | 78 | 55 | —29 | 12 | 45 222 14 | 48 9 59 7 66 0 93

192 17| 51 | 15 | 46 | 32 1 0 69 223 27 | 37 9 64 16 56 14 56

193 17| 46 | 22 | 31 0 0 20 | 33 224 21| 60 | -1 | 94 11 73 15 57

194 0 89 | -1 | 84| 27 36 8 63 225 12| 68 | -2 | 89 10 67 26 38

195 26 | -19 | 25| 7 33 | 25 | 35 | 18 226 2 97 | -9 | 108 | —10 | 116 | —24 | 127

196 22 | -17 | 30 | =7 | 34 | =30 | 33 | —25

232 Rec. ITU-T H.264 (08/2021)

Table 9-21 — Values of variables m and n for ctxldx from 227 to 275

I and Sl

Value of cabac_init_idc

Value of cabac_init_idc

ctxldx 1 ctxldx 1

m n m n m n m n m n m n m n m n
227 -3 |71 | -6 76 | —23 | 112 | 24 | 115 252 -12 | 73 —6 [55| -16 |72 | -14 | 75
228 -6 |42 | -2 44 | =15 | 71 | 22 | 82 253 -8 76 0 58 | =7 | 69 | -10 | 79
229 -5 | 50| 0 45 | -7 | 61 | -9 | 62 254 -7 | 80 0 [64| -4 |69| -9 | 83
230 -3 | 54| 0 52 0 53 0 53 255 -9 | 88 | 3 | 74| 5 | 74|12 92
231 -2 | 62| -3 | 64 | -5 | 66 0 59 256 -17 | 110 | -10 | 90 | -9 | 86 | —18 | 108
232 0 58 | -2 50 | 11| 77 | -14 | 85 257 -11 | 97 0 70 2 66 | —4 79
233 1 |63 4|70 | -9 |8 |-13| 89 258 -20 | 84 | -4 | 29| -9 |34 | -22| 69
234 -2 | 72| -4 75 -9 84 | -13 | 9% 259 11| 79 5 31 1 32 | -16 | 75
235 -1 | 74| -8 | 82 | -10| 87 | -11 | 92 260 -6 | 73 7 |42] 11 | 31| -2 | 58
236 -9 | 91| -17 | 102 | —34 | 127 | —29 | 127 261 —4 74 1 59 5 52 1 58
237 -5 | 67| -9 | 77 | -21 | 101 | —21 | 100 262 -13 | 86 | -2 | 58| -2 |55 | -13| 78
238 -5 | 27| 3 24 | -3 | 39 | 14| 57 263 -13 | 96 | -3 | 72| -2 | 67| -9 | 83
239 -3 13| 0 42 | -5 | 53 | -12 | 67 264 -11 | 97 | -3 |8 | 0 |73| -4 | 81
240 -2 | 44 0 48 -7 61 | -11 | 71 265 -19 | 117 | -11 | 97 | -8 | 89 | -13 | 99
241 0 46 0 55 | -11 | 75 | 10 | 77 266 -8 78 0 58 3 52 | -13 | 81
242 -16 | 64| 6 | 59 | -15| 77 | -21 | 85 267 -5 | 33 8 5 7 4 | -6 | 38
243 -8 |68 | —7 | 71 | -17 | 91 | -16 | 88 268 -4 | 48 | 10 |14 | 10 | 8 | 13 | 62
244 | -10 | 78 | 12 | 83 | —25 | 107 | —23 | 104 269 -2 | 53 | 14 | 18| 17 | 8 | -6 | 58
245 -6 | 77 | -11| 87 | 25| 111 | -15| 98 270 -3 62 13 | 27| 16 |19 | 2 59
246 -10 | 86 | —30 | 119 | —28 | 122 | —37 | 127 271 -13 | 71 2 |40 | 3 |37|-16| 73
247 -12 192 | 1 58 | -11 | 76 | —-10 | 82 272 -10 | 79 0 [58| -1 |61|-10]| 76
248 -15 55| -3 | 29 | 10| 44 | -8 | 48 273 -12 | 86 | 3 | 70| -5 | 73| -13 | 86
249 -10 {60 | -1 | 36 | -10 | 52 | -8 | 61 274 -13| 9 | 6 [79| -1 |70 | -9 | 83
250 -6 | 62| 1 38 | -10 | 57 | -8 | 66 275 -14 | 97 | -8 |8 | -4 | 78 | 10 | 87
251 -4 | 65 2 43 -9 58 -7 70

Rec. ITU-T H.264 (08/2021)

233

234

Table 9-22 — Values of variables m and n for ctxldx from 277 to 337

I and Sl

Value of cabac_init_idc

Value of cabac_init_idc

ctxldx 1 ctxldx 1 2

m n m n m n m n m n|{mijn m n m n
277 -6 93 | -13 | 106 | —21 | 126 | —22 | 127 308 -16 | 96 | -1 | 51 | =16 | 77 | —10 | 67
278 -6 84 | —16 | 106 | —23 | 124 | =25 | 127 309 -7 |8 | 7 |49 | -2 | 64 1 68
279 -8 | 79 | -10 | 87 | -20 | 110 | —25 | 120 310 -8 |8 | 8 |52| 2 |61| 0 |77
280 0 66 | —21 | 114 | —26 | 126 | —27 | 127 311 -7 |8 | 9 | 41| -6 | 67 2 64
281 -1 71 | —-18 | 110 | 25 | 124 | —19 | 114 312 -9 |8 | 6 | 47| -3 | 64 0 68
282 0 62 | -14 | 98 | —-17 | 105 | —23 | 117 313 -13 |8 | 2 |55 | 2 |57| -5 |78
283 -2 | 60 | —22 | 110 | —27 | 121 | -25 | 118 314 4 | 66|13 |41 | -3 |65| 7 |55
284 -2 59 | —21 | 106 | —27 | 117 | —26 | 117 315 -3 | 77|10 | 44 | -3 | 66 5 59
285 -5 | 75 | —-18 | 103 | -17 | 102 | —24 | 113 316 -3 |76 | 6 |50| 0O |62| 2 |65
286 -3 62 | —21 | 107 | —26 | 117 | —28 | 118 317 -6 | 76 | 5 | 53 9 51| 14 | 54
287 -4 | 58 | —-23 | 108 | —27 | 116 | —31 | 120 318 10 |58 |13 |49 | -1 |66 | 15 | 44
288 -9 | 66 | —26 | 112 | —33 | 122 | —37 | 124 | 319 -1 |76 | 4 | 63| -2 |71| 5 |60
289 -1 | 79 |-10| 9% | -10| 95 | -10 | 94 320 -1 | 83| 6 |64| -2 |75| 2 |70
290 0 71 | -12 | 95 | —14 | 100 | —15 | 102 321 -7 |99 | -2|69| -1 |70| -2 |76
291 3 68 | 5 | 91 | 8| 9 |-10| 99 322 -14 19| -2|59| -9 72| -18 | 86
292 10 | 44 | -9 | 93 | -17 | 111 | —-13 | 106 323 2 |9 | 6 |70 14 | 60| 12 | 70
293 -7 | 62 | 22 | 94 | -28 | 114 | -50 | 127 324 0 |76 |10 |44 | 16 |37 | 5 |64
294 15 | 36 | 5 | 86 | 6 | 89 | 5 | 92 325 -5 |74 9 | 31| 0 |47 |-12| 70
295 14 40 9 67 -2 80 17 57 326 0 70 | 12 | 43| 18 | 35| 11 | 55
296 16 | 27 | 4 | 80 | -4 | 82 | -5 | 86 327 -11 | 75| 3 | 53| 11 (37| 5 |56
297 12 | 29 | -10| 8 | -9 | 8 | -13 | 94 328 1 | 68|14 34| 12 |41 | 0 | 69
298 1 4 | -1 | 70 | -8 | 81 | 12| 91 329 0O |[65|10 (38| 10 |41 | 2 | 65
299 20 | 36 7 60 | -1 | 72 | =2 | 77 330 -14 | 73| 3|52 | 2 |48 | 6 |74
300 18 | 32 9 58 5 64 0 71 331 3 [62|13|40| 12 |41 | 5 |54
301 5 42 5 61 1 67 -1 73 332 4 62 | 17 | 32| 13 | 41 7 54
302 1 48 | 12 | 50 9 56 4 64 333 -1 | 68| 7 |44 | 0O |59| —6 |76
303 10 | 62 | 15 | 50 0 69 | -7 | 81 334 | -13 | 75| 7 | 38| 3 |50 -11| 82
304 17 46 18 49 1 69 5 64 335 11 | 55|13 |50 | 19 |40 | -2 | 77
305 9 64 17 54 7 69 15 57 336 5 64 | 10 | 57 3 66 | -2 | 77
306 -12 | 104 | 10 41 =7 69 1 67 337 12 |70 | 26 | 43 | 18 |50 | 25 | 42
307 -11 | 97 7 46 -6 67 0 68

Rec. ITU-T H.264 (08/2021)

Table 9-23 — Values of variables m and n for ctxldx from 338 to 398

I and Sl

Value of cabac_init_idc

Value of cabac_init_idc

slices ! ;?gefl
ctxldx 0 1 ctxldx 1 2

m n m n m n m n m n m|n|m n m n
338 15 6 14 11 | 19| -6 | 17 | -13 369 32| 26 | 31 | -4 |40 | 37| 37 | -17
339 6 19 11 | 14 | 18| -6 |16 | -9 370 37|30 |27 | 6 |38|-30| 32 1
340 7 16 9 11 | 14 0 17 | -12 371 44 | -32 | 34 | 8 | 46 | -33 | 34 15
341 12 14 18 11 | 26 | -12 | 27 | -21 372 34 | -18 | 30 | 10 | 42 | =30 | 29 15
342 18 13 21 9 31| -16 | 37 | —30 373 34 | -15 | 24 | 22 | 40 | 24 | 24 25
343 13 11 23 -2 | 33| -25| 41 | —40 374 40 | -15 | 33 | 19 | 49 | —29 | 34 22
344 13 15 | 32 | -15 |33 | —22 | 42 | 41 | 375 33| -7 |22 32|38 |-12| 31 16
345 15 16 32 | 15| 37 | —28 | 48 | 47 376 35| -5 |26 31|40 | -10| 35 18
346 12 | 23 | 34 | -21 |39 | -30 |39 |-32| 377 33| 0 |21 |41 |38| -3 | 31 | 28
347 13 | 23 | 39 | -23 | 42| 30| 46 | 40 | 378 38| 2 | 26|44 |46 | 5 | 33 | 41
348 15 | 20 | 42 | 33 | 47| 42 |52 | -51 | 379 33| 13 |23 |47 |31 | 20 | 36 | 28
349 14 | 26 | 41 | -31 | 45| —36 | 46 | 41 | 380 23| 35 |16 | 65|29 | 30 | 27 | 47
350 14 44 46 | —28 | 49 | -34 | 52 | -39 381 13| 58 | 14 | 71 | 25 | 44 21 62
351 17 | 40 | 38 | -12 | 41 | -17 | 43 | -19 | 382 29| -3 | 8 |60 |12 | 48 18 | 31
352 17 | 47 | 21 | 29 | 32| 9 |32 | 11 383 26| 0 6 | 63 | 11 | 49 19 | 26
353 24 | 17 | 45 | 24 | 69 | —71 | 61 | 55 | 384 22| 30 |17 |65 | 26| 45 | 36 | 24
354 21 | 21 | 53 | 45| 63 | 63 | 56 | —46 | 385 31| -7 |21 |24 |22 | 22 | 24 | 23
355 25 | 22 | 48 | —26 | 66 | 64 | 62 | 50 | 386 35| 15|23 |20 |23 | 22 | 27 16
356 31 | 27 | 65 | 43 | 77 | —74 | 81 | —67 | 387 34| -3 |26 |23 |27 | 21 | 24 | 30
357 22 | 29 | 43 | -19 |54 | -39 |45 | —20 | 388 34| 3 | 2732|3320 | 31 | 29
358 19 | 35 | 39 | -10 |52 | 35|35 | -2 389 36| -1 |28 |23 |26 28 | 22 | 41
359 14 | 50 | 30 9 |41]-10|28| 15 390 34| 5 | 28|24 |30 24 | 22 | 42
360 10 | 57 18 | 26 |36 | 0 (34| 1 391 32| 11 |23 |40 |27 | 34 16 | 60
361 7 63 | 20 | 27 |40 | -1 | 39| 1 392 35| 5 |24 |32|18| 42 15 | 52
362 -2 | 77 0 57 | 30| 14 |30 | 17 393 34| 12 |28 |29 | 25 | 39 14 | 60
363 -4 | 82 | -14| 82 | 28| 26 | 20| 38 394 39| 11 |23 |42 |18 | 50 3 78
364 -3 | 94 | -5 | 75 | 23| 37 |18 | 45 395 30| 29 |19 |57 |12 | 70 | -16 | 123
365 9 69 | -19 | 97 |12 | 55 | 15| 54 396 34| 26 |22 |53 |21 | 54 | 21 | 53
366 -12 | 109 | =35 | 125 | 11 | 65 0 79 397 29 | 39 |22 |61 |14 | 71 22 56
367 36 | 35 | 27 0 37 | -33 | 36 | —16 398 19 | 66 |11 | 8 | 11 | 83 25 61
368 36 | —34 | 28 0 39 | 36 | 37 | 14

Rec. ITU-T H.264 (08/2021)

235

236

Table 9-24 — Values of variables m and n for ctxldx from 402 to 459

Value of cabac_init_idc

Value of cabac_init_idc

slices slices
ctxldx 1 ctxldx 1

m n m n m n m n m n m n m n m n
402 =17 | 120 | -4 | 79| -5 | 8 | -3 | 78 431 -2 | 55 | -12 | 56 | -9 | 57 | —-12 | 59
403 -20 | 112 | -7 |71 | -6 | 81 | -8 | 74 432 0 61 | 6 | 60 | 6 | 63 | -8 | 63
404 -18 | 114 | -5 | 69 | =10 | 77 -9 72 433 1 64 -5 62 —4 65 -9 67
405 | -11| 8 | -9 |70 | -7 | 81 | -10| 72 434 0 68 | 8 | 66 | -4 | 67 | -6 | 68
406 | -15| 92 | -8 |66 |17 | 80 | -18 | 75 435 -9 | 92 | -8 | 76 | -7 | 82 |-10| 79
407 -14 | 89 | -10 |68 | -18 | 73 | 12| 71 436 -14 | 106 | 5 | 86 | -3 | 8 | -3 | 78
408 -26 | 71 | 19 | 73 | 4 74 | -11 | 63 437 -13 | 97 -6 81 -3 76 -8 74
409 -15| 81 |-12 |69 |-10| 8 | -5 | 70 438 =15 90 |(-10 | 77 | =7 | 72 | -9 | 72
410 -14 | 80 | -16 | 70 | -9 71 | 17 | 75 439 -12 | 90 -7 81 -6 78 | 10 | 72
411 0 68 | -15 | 67 | -9 67 | -14 | 72 440 -18 | 88 | -17 | 80 | -12 | 72 | -18 | 75
412 -14 | 70 | -20 | 62 | -1 61 | -16 | 67 441 -10 | 73 | -18 | 73 | -14 | 68 | -12 | 71
413 | -24 | 5 | -19 | 70| -8 | 66 | -8 | 53 442 -9 | 79 | -4 | 74| -3 | 7 |-11| 63
414 | -23 | 68 | -16 | 66 | -14 | 66 | —14 | 59 443 -14 | 86 |-10| 83 | 6 | 76 | -5 | 70
415 —24 | 50 | —22 | 65 0 59 -9 52 444 -10 | 73 -9 71 -5 66 | -17 | 75
416 -11 | 74 | -20 | 63 2 59 | -11 | 68 445 -10 | 70 -9 67 -5 62 | 14 | 72
417 23 | -13| 9 | -2 | 17 |-10| 9 -2 446 -10| 69 | -1 | 61 0 57 | -16 | 67
418 26 | -13 | 26 | -9 | 32 | -13 | 30 | —10 | 447 -5 | 66 | -8 | 66 | 4 | 61 | 8 | 53
419 40 | 15| 33 | 9| 42 | -9 |31 —4 448 -9 | 64 | -14| 66 | -9 | 60 | 14 | 59
420 49 | 14 | 39 | -7 | 49 -5 33 -1 449 -5 58 0 59 1 54 -9 52
421 44 3 41 | -2 | 53 0 33 7 450 2 59 2 59 2 58 | -11 | 68
422 45 6 45 3 64 3 31 12 451 21 | -10 | 21 | 13| 17 | -10 9 -2
423 44 | 34 | 49 | 9 | 68 | 10 | 37 23 452 24 | -11 | 33 | -14| 32 | 13| 30 | -10
424 33 | 54 | 45 | 27| 66 | 27 | 31 | 38 453 28 | 8|39 | 7|42 | -9 3 | 4
425 19 | 82 | 36 |59 | 47 | 57 | 20 | 64 454 28 | -1 | 46 | -2 | 49 | -5 | 33 | -1
426 -3 | 7| 6|66 5|71 |-9|71 455 29 3 51 2 53 0 33 7
427 -1 |23 | -7 (3] 0 24 | -7 | 37 456 29 9 60 6 64 3 31 12
428 1 34 | -7 (42| -1 | 36 | -8 | 44 457 3 | 20 | 61 | 17 | 68 10 | 37 | 23
429 1 43 | -8 | 45| -2 | 42 | -11| 49 458 29 | 36 | 55 | 34 | 66 | 27 | 31 | 38
430 0 54 -5 | 48 | 2 52 | -10 | 56 459 14 67 42 62 47 57 20 64

Rec. ITU-T H.264 (08/2021)

Table 9-25 — Values of variables m and n for ctxldx from 460 to 483

I and Sl

Value of cabac_init_idc

Value of cabac_init_idc

slices ! :I?geSSI
ctxldx 1 2 ctxldx 1
m n m n m n m n m n m n m n m n
460 | -17 | 123 | -7 | 92 0 80 | 11 | 80 472 | =17 | 123 | -7 | 92 0 80 | 11 | 80
461 -12 | 115 | -5 89 -5 89 5 76 473 -12 | 115 | -5 89 -5 89 5 76
462 -16 | 122 | -7 96 -7 94 2 84 474 -16 | 122 | -7 96 =7 94 2 84
463 -11 | 115 | -13 | 108 | -4 92 5 78 475 -11 | 115 | -13 | 108 | -4 92 5 78
464 -12 | 63 -3 46 0 39 -6 55 476 -12 | 63 -3 46 0 39 -6 55
465 -2 | 68 | -1 | 65 0 65 4 61 477 -2 | 68 | -1 | 65 0 65 4 61
466 -15 | 84 -1 57 | -15 | 84 | 14 | 83 478 -15 | 84 -1 57 | 15| 84 | -14 | 83
467 -13 | 104 | -9 93 | =35 | 127 | =37 | 127 479 -13 | 104 | -9 93 | =35 | 127 | -37 | 127
468 -3 |70 | 3|74 | -2 |73 | -5]|T79 480 -3 |70 | 3|7 | -2]|73] 5|79
469 -8 | 93 | -9 | 92 | -12 | 104 | -11 | 104 | 481 -8 | 93 | -9 | 92 | -12 | 104 | -11 | 104
470 -10 | 90 -8 87 -9 91 | -11 | 91 482 -10 | 90 -8 87 -9 91 | —-11 | 91
471 -30 | 127 | -23 | 126 | —31 | 127 | —30 | 127 483 -30 | 127 | —23 | 126 | —31 | 127 | —-30 | 127
Table 9-26 — Values of variables m and n for ctxldx from 484 to 571
I and SI Value of cabac_init_idc Value of cabac_init_idc
slices — ! ar_ld S —
ctxldx 1 ctxldx slices 1
m n m n m n m | n m n m n m n m | n
484 -7 93 -2 85 | 13 | 103 | -4 | 86 528 =7 93 -2 85 | -13 | 103 | -4 | 86
485 | -11| 87 | -6 | 78 | -13 | 91 | 12 (88| 529 | -11| 87 | -6 | 78 | 13| 91 | -12 | 88
486 -3 | 77| -1 |7 | -9]| 8 | 5|8 | 530 3|7 |-1|7 | -9 8 | 5|82
487 -5 71 -7 77 | -14 | 92 -3 | 72 531 -5 71 -7 77 | 14 | 92 -3 |72
488 -4 | 63 2 54 | -8 | 76 | -4 | 67 | 532 -4 | 63 2 54 | -8 | 76 | -4 | 67
489 -4 | 68 5 50 | -12 | 87 | -8 | 72| 533 -4 | 68 5 50 | -12 | 87 | -8 | 72
490 -12 | 84 -3 68 | —23 | 110 | —16 | 89 534 -12 | 84 -3 68 | —23 | 110 | -16 | 89
491 -7 | 62 1 50 | —24 | 105 | -9 | 69 | 535 -7 | 62 1 50 | —24 | 105 | -9 | 69
492 =7 65 6 42 | -10 | 78 -1 | 59 536 =7 65 6 42 | -10 | 78 -1 | 59
493 8 61 | -4 | 81 |-20| 112 | 5 |66 | 537 8 61 | -4 | 8 | -20| 112 | 5 | 66
494 5 56 1 63 | -17 | 99 4 57 538 5 56 1 63 | -17 | 99 4 57
495 -2 66 -4 70 | =78 | 127 | 4 | 71 539 -2 66 —4 70 | =78 | 127 | 4 | 71
496 1 64 0 67 | —70 | 127 | -2 | 71 540 1 64 0 67 | —70 | 127 | -2 | 71
497 0 61 2 57 | —50 | 127 2 58 641 0 61 2 57 | -50 | 127 2 58
498 -2 78 -2 76 | —46 | 127 | -1 | 74 542 -2 78 -2 76 | 46 | 127 | -1 | 74

Rec. ITU-T H.264 (08/2021)

237

238

Table 9-26 — Values of variables m and n for ctxldx from 484 to 571

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices ! :I?geSSI
ctxldx 1 ctxldx 1

m n m n m n m | n m n m n m n m | n
499 1 50 11 35 —4 66 -4 | 44 543 1 50 11 35 -4 66 -4 | 44
500 7 52 4 64 -5 78 -1 | 69 544 7 52 4 64 -5 78 -1 | 69
501 10 35 1 61 -4 71 0 62 545 10 35 1 61 —4 71 0 62
502 0 44 11 35 -8 72 -7 | 51 546 0 44 11 35 -8 72 -7 | 51
503 11 38 18 25 2 59 -4 | 47 547 11 38 18 25 2 59 -4 | 47
504 1 45 12 24 -1 55 -6 | 42 548 1 45 12 24 -1 55 -6 | 42
505 0 46 13 29 -7 70 -3 |4 549 0 46 13 29 -7 70 -3 | 41
506 5 44 13 36 -6 75 -6 | 53 550 5 44 13 36 -6 75 -6 | 53
507 31 17 | -10 | 93 -8 89 8 76 551 31 17 | -10 | 93 -8 89 8 76
508 1 51 -7 73 | 34 (119 | -9 | 78 552 1 51 -7 73 | 34119 -9 |78
509 7 50 -2 73 -3 75 | 11 | 83 553 7 50 -2 73 -3 75 | -11 | 83
510 28 19 13 46 32 20 9 52 554 28 19 13 46 32 20 9 52
511 16 33 9 49 30 22 0 67 555 16 33 9 49 30 22 0 67
512 14 62 -7 | 100 | —44 | 127 | -5 | 90 556 14 62 -7 | 100 | —44 | 127 | -5 | 90
513 -13 | 108 9 53 0 54 1 67 557 -13 | 108 9 53 0 54 1 67
514 —15 | 100 2 53 -5 61 | -15 | 72 558 —15 | 100 2 53 -5 61 | -15 | 72
515 -13 | 101 5 53 0 58 -5 | 75 559 -13 | 101 5 53 0 58 -5 | 75
516 -13 | 91 -2 61 -1 60 -8 | 80 560 -13 | 91 -2 61 -1 60 -8 | 80
517 -12 | 94 0 56 -3 61 | —21 | 83 561 -12 | 9% 0 56 -3 61 | —21 | 83
518 -10 | 88 0 56 -8 67 | —21 | 64 562 -10 | 88 0 56 -8 67 | 21 | 64
519 -16 | 84 | -13 | 63 | 25| 84 | -13 | 31 563 -16 | 84 | -13 | 63 | 25 | 84 | -13 | 31
520 -10 | 86 -5 60 | -14 | 74 | -25 | 64 564 -10 | 86 -5 60 | -14 | 74 | =25 | 64
521 =7 83 -1 62 -5 65 | —29 | 94 565 =7 83 -1 62 -5 65 | 29 | 94
522 -13 | 87 4 57 5 52 9 75 566 -13 | 87 4 57 5 52 9 75
523 -19 | 94 -6 69 2 57 17 | 63 567 -19 | 9% -6 69 2 57 17 | 63
524 1 70 4 57 0 61 -8 | 74 568 1 70 4 57 0 61 -8 | 74
525 0 72 14 39 -9 69 -5 | 35 569 0 72 14 39 -9 69 -5 |35
526 -5 74 4 51 | -11 | 70 -2 | 27 570 -5 74 4 51 | -11 | 70 -2 | 27
527 18 59 13 68 18 55 13 | 91 571 18 59 13 68 18 55 13 | 91

Rec. ITU-T H.264 (08/2021)

Table 9-27 — Values of variables m and n for ctxldx from 572 to 659

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices ! ;?(?ESSI
ctxldx 1 ctxldx 1
m n m | n m n m n m n m | n m n [m n
572 24 0 11 | 28 4 45 4 39 616 24 0 11 | 28 4 45 4 39
573 15 9 2 | 40 10 28 0 42 617 15 9 2 |40 | 10 28 0 42
574 8 25 3 |44] 10 31 7 34 618 8 25 3 |44] 10 31 7 34
575 13 | 18 0 49| 33 | 11 |11 | 29 619 13| 18 0 |49 | 33 | 11 |11 | 29
576 15 9 0 |46 | 52 | 43 | 8 31 620 15 9 0 |46 | 52 | 43 | 8 31
577 13| 19 2 | 44| 18 15 6 37 621 13 | 19 2 | 44| 18 15 6 37
578 10 | 37 2 | 51| 28 0 7 42 622 10 | 37 2 | 51| 28 0 7 42
579 12 | 18 0 | 47| 35 | 22| 3 40 623 12 | 18 0 |47] 35 | 22| 3 40
580 6 29 4 |39 | 38 | 25| 8 33 624 6 29 4 |39 | 38 | 25| 8 33
581 20 | 33 2 | 62| 34 0 13 | 43 625 20 | 33 2 | 62| 34 0 13 | 43
582 15| 30 6 |46 | 39 | -18 | 13 | 36 626 15 | 30 6 |46 | 39 | -18 | 13 | 36
583 4 45 0 54 | 32 | 12 | 4 47 627 4 45 0 541 32 | -12 | 4 47
584 1 58 3 54 | 102 | 94 | 3 55 628 1 58 3 54 | 102 | 94 | 3 55
585 0 62 2 | 58 0 0 2 58 629 0 62 2 58 0 0 2 58
586 7 61 4 | 63| 5 | -15| 6 60 630 7 61 4 | 63| 5 |-15| 6 60
587 12 | 38 6 51 | 33 —4 8 44 631 12 | 38 6 51 | 33 -4 8 44
588 11 | 45 6 | 57 | 29 10 | 11 | 44 632 11 | 45 6 57 | 29 10 (11 | 44
589 15 | 39 7 53 | 37 -5 | 14| 42 633 15| 39 7 53 | 37 -5 |14 | 42
590 11 | 42 6 52 | 51 | -29 | 7 48 634 11 | 42 6 52 | 51 | -29 | 7 48
591 13 | 44 6 |55 | 39 -9 4 56 635 13 | 44 6 | 55| 39 -9 4 56
592 16 | 45 11 | 45 | 52 | -34 | 4 52 636 16 | 45 11 | 45| 52 | -34 | 4 52
593 12 | 41 14 | 36 | 69 | 58 | 13 | 37 637 12 | 41 14 | 36 | 69 | 58 | 13 | 37
594 10 | 49 8 |53 | 67 | 63| 9 49 638 10 | 49 8 | 53| 67 | 63| 9 49
595 30| 34 | -1|82 | 44 -5 |19 | 58 639 30| 34 |-1|82 | 44 -5 |19 | 58
596 18 | 42 7 55 | 32 7 10 | 48 640 18 | 42 7 55 | 32 7 10 | 48
597 10| 55 | -3 |78 | 55 | —29 | 12 | 45 641 10| 55 | -3 | 78 | 55 | =29 | 12 | 45
598 17 | 51 15 | 46 | 32 1 0 69 642 17 | 51 15 | 46 | 32 1 0 69
599 17 | 46 | 22 | 31 0 0 20 | 33 643 17 | 46 22 | 31 0 0 20 | 33
600 0 89 | -1 |84 | 27 36 8 63 644 0 89 | -1 84| 27 36 8 63
601 26 | 19| 25| 7 33 | 25| 35| —18 645 26 | 19 | 25| 7 33 | 25|35 | —18
602 22 | -17 | 30 | =7 | 34 | =30 | 33 | —-25 646 22 | -17 | 30 | =7 | 34 | =30 | 33 | 25

Rec. ITU-T H.264 (08/2021)

239

240

Table 9-27 — Values of variables m and n for ctxldx from 572 to 659

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices ! ;?(?ESSI
ctxldx 1 ctxldx 1

m n m | n m n m n m n m | n m n [m n
603 26 | 17 | 28 | 3 36 | 28 |28 | -3 647 26 | 17 | 28 | 3 36 | 28 |28 | -3
604 30| 25 | 28 | 4 38 | 28| 24| 10 648 30| 25 | 28 | 4 38 | 28 | 24| 10
605 28| -20|132 | 0 38 | 27 | 27 0 649 28 | -20 (32| 0 38 | =27 | 27 0
606 33|23 |34 |-1| 34 | -18| 34| -14 650 33|23 (34 |-1| 34 |-18 |34 |-14
607 37 | 27 |30 | 6 35 | -16 | 52 | 44 651 37 | -27 | 30 | 6 35 | -16 | 52 | —44
608 33| 23|30]| 6 34 | -14 | 39 | —24 652 33 (-23(30]| 6 34 | -14 | 39 | 24
609 40 | 28 | 32 | 9 32 -8 | 19 | 17 653 40 | -28 | 32 | 9 32 -8 |19 | 17
610 38 | -17 | 31 | 19 | 37 -6 | 31| 25 654 38 | -17 | 31 | 19 | 37 -6 [31| 25
611 33| -11)26 | 27 | 35 0 36 | 29 655 33 |-11 |26 |27 | 35 0 36 | 29
612 40 | -15 | 26 | 30 | 30 10 | 24 | 33 656 40 | -15 | 26 | 30 | 30 10 | 24 | 33
613 41 | 6 | 37 | 20 | 28 18 | 34| 15 657 41 | —6 | 37 | 20 | 28 18 (34| 15
614 38 1 28 | 34 | 26 25 | 30| 20 658 38 1 28 | 34 | 26 25 | 30| 20
615 41 | 17 17 | 70 | 29 41 |22 | 73 659 41 | 17 17 | 70 | 29 41 |22 | 73

Rec. ITU-T H.264 (08/2021)

Table 9-28 — Values of variables m and n for ctxldx from 660 to 717

Value of cabac_init_idc

Value of cabac_init_idc

slices slices
ctxldx 0 1 2 ctxldx 1
m n m n m n m n m n m n m n m n

660 -17 (120 | 4 [79| -5 |8 | -3 | 78 689 2 | 59 2 59 | 2 | 58 | 11 | 68
661 -20 | 112 | =7 |71 | -6 |81 | -8 |74 690 23 | -13 9 -2 | 17 | -10 9 -2
662 -18 | 114 | -5 |69 | =10 | 77 | -9 | 72 691 26 | -13 | 26 | -9 |32 | -13 | 30 | -10
663 -11 | 8 | -9 (70| -7 |81 | -10| 72 692 40 | -15 | 33 | -9 | 42| -9 | 31 | 4
664 =15 | 92 -8 |66 | -17 | 80 | —18 | 75 693 49 | -14 | 39 -7 |49 | -5 33 -1
665 -14 | 89 | -10 (68 | -18 | 73 | -12 | 71 694 4 | 3 41 | -2 | 53] O 33 7
666 -26 | 71 | -19 (73| -4 | 74| -11 | 63 695 45 | 6 45 3 |64 3 31 | 12
667 -15| 81 | -12 |69 | -10 | 83 | -5 | 70 696 44 | 34 49 9 68 | 10 37 23
668 -14 | 80 | -16 [70 | -9 | 71| -17 | 75 697 33| 54 | 45 | 27 | 66| 27 | 31 | 38
669 0 68 | -15 | 67 | -9 |67 | -14 | 72 698 19 | 82 | 36 | 59 |47 | 57 | 20 | 64
670 -14 | 70 | -20 {62 | -1 | 61 | —16 | 67 699 21 | -10 | 21 | -13 | 17 | -10 9 -2
671 -24 | 56 | -19 (70 | -8 | 66 | -8 | 53 700 24 | -11| 33 | -14 |32 | -13 | 30 | -10
672 -23 | 68 | -16 | 66 | —14 | 66 | —14 | 59 701 28| -8 | 39 | -7 |42 | -9 | 31 | 4
673 -24 | 50 | —22 | 65 0 50 | -9 | 52 702 28 | -1 46 -2 |49 | -5 33 -1
674 -11| 74 | -20 | 63 | 2 |59 | -11 | 68 703 29 | 3 51 2 |53 0 33 7
675 -14 | 106 | -5 |8 | -3 |81 | -3 |78 704 29 9 60 6 64 3 31 12
676 -13 | 97 | 6 |81 | -3 |76 | -8 | 74| 705 35| 20 | 61 17 |68 | 10 | 37 | 23
677 =15 | 90 | -10 (77 | -7 |72 | -9 | 72 706 29 | 36 | 55 | 34 | 66| 27 | 31 | 38
678 =12 | 90 -7 |8 | 6 |78 |-10 | 72 707 14 | 67 42 62 | 47 | 57 20 64
679 -18 | 88 | -17 (80 | -12 | 72 | 18 | 75 708 3| 7 | 6 |66 |-5|71|-9|T7
680 -10 | 73 | -18 | 73 | -14 | 68 | 12 | 71 709 -1| 23 | -7 | 3% | 0|24 | -7 | 37
681 -9 79 -4 | 74| -3 | 70 | -11 | 63 710 1 34 =7 42 | -1 | 36 -8 44
682 -14 | 8 | -10 (83 | 6 |76 | -5 [70 711 1 43 -8 45 | -2 | 42 | 11 | 49
683 -10 | 73 -9 | 71| -5 |66 |17 | 75 712 0 54 -5 48 | -2 | 52 | -10 | 56
684 -10 | 70 -9 | 67| -5 |62 |-14]| 72 713 -2 | 5 | -12| 5 | -9 | 57 | -12 | 59
685 -10 | 69 | -1 (61| O |57 | -16 | 67 714 0| 61| 6|60 |-6| 63 | -8 63
686 -5 | 66 | -8 |66 | -4 61| —8 |53 715 1|64 | 5|62 |-4]| 65| -9 | 67
687 -9 64 | -14 | 66 | -9 | 60 | —14 | 59 716 0 68 -8 66 -4 | 67 -6 68
688 -5 | 58 0 [59| 1 |54 | -9 |52 717 9192 | -8 |7 |-7|8 |-10|79

Rec. ITU-T H.264 (08/2021)

241

242

Table 9-29 — Values of variables m and n for ctxldx from 718 to 775

Value of cabac_init_idc

Value of cabac_init_idc

slices slices
ctxldx 0 1 2 ctxldx 1

m n m n m n m n m n m n m n m n
718 -17 (120 | 4 [79| -5 |8 | -3 | 78 747 2 | 59 2 59 | 2 | 58 | 11 | 68
719 -20 | 112 | =7 |71 | -6 |81 | -8 |74 748 23 | -13 9 -2 | 17 | -10 9 -2
720 -18 | 114 | -5 |69 | =10 | 77 | =9 | 72 749 26 | -13 | 26 -9 |32 |-13 | 30 | -10
721 -11 | 85 -9 |70 | -7 | 81| -10 | 72 750 40 | -15 | 33 -9 | 42| -9 31 —4
722 =15 | 92 -8 |66 | -17 | 80 | —18 | 75 751 49 | -14 | 39 -7 |49 | -5 33 -1
723 -14 | 89 | -10 [68 | -18 | 73 | -12 | 71 752 44 3 41 -2 | 53 0 33 7
724 26 | 71 | 19 |73 | -4 | 74| 11 | 63 753 45 6 45 3 64 3 31 12
725 -15| 81 | -12 |69 | -10 | 83 | -5 | 70 754 44 | 34 49 9 68 | 10 37 23
726 -14 | 8 |-16 |70 | -9 | 71 | 17 | 75 755 33 | 54 45 27 | 66 | 27 31 38
727 0 68 | -15 | 67 | -9 |67 | -14 | 72 756 19 | 82 | 36 | 59 |47 | 57 | 20 | 64
728 -14 | 70 | -20 {62 | -1 | 61 | —16 | 67 757 21 | -10 | 21 | -13 | 17 | -10 9 -2
729 -24 | 56 | -19 (70 | -8 | 66 | -8 | 53 758 24 | -11| 33 | -14 |32 | -13 | 30 | -10
730 -23 | 68 | -16 | 66 | —14 | 66 | —14 | 59 759 28| -8 | 39 | -7 |42 | -9 | 31 | 4
731 -24 | 50 | —22 | 65 0 50 | -9 | 52 760 28 | -1 46 -2 |49 | -5 33 -1
732 -11| 74 | -20 | 63 | 2 |59 | -11 | 68 761 29 | 3 51 2 |53 0 33 7
733 -14 | 106 | -5 |8 | -3 |81 | -3 |78 762 29 9 60 6 64 3 31 12
734 -13 | 97 | 6 |81 | -3 |76 | -8 | 74| 763 35| 20 | 61 17 |68 | 10 | 37 | 23
735 =15 | 90 | -10 (77 | -7 |72 | -9 | 72 764 29 | 36 | 55 | 34 | 66| 27 | 31 | 38
736 =12 | 90 -7 |8 | 6 |78 |-10 | 72 765 14 | 67 42 62 | 47 | 57 20 64
737 -18 | 88 | -17 |80 | -12 | 72 | —-18 | 75 766 -3 | 75 -6 66 | 5| 71 -9 71
738 -10 | 73 | -18 | 73 | -14 | 68 | -12 | 71 767 -1] 23 =7 35 0 24 -7 37
739 -9 79 -4 | 74| -3 | 70 | -11 | 63 768 1 34 =7 42 | -1 | 36 -8 44
740 -14 | 8 | -10 (83 | 6 |76 | -5 [70 769 1 43 -8 45 | =2 | 42 | -11 | 49
741 -10 | 73 -9 | 71| -5 |66 |17 | 75 770 0 54 -5 48 | -2 | 52 | -10 | 56
742 -10 | 70 -9 | 67| -5 |62 |-14]| 72 771 -2 | 5 | -12| 5 | -9 | 57 | -12 | 59
743 -10 | 69 | -1 (61| O |57 | -16 | 67 772 0| 61| 6|60 |-6| 63 | -8 63
744 -5 | 66 | -8 |66 | -4 61| —8 |53 773 1|64 | 5|62 |-4]| 65| -9 | 67
745 -9 64 | -14 | 66 | -9 | 60 | —14 | 59 774 0 68 -8 66 -4 | 67 -6 68
746 -5 | 58 0 [59| 1 |54 | -9 |52 775 919 | -8 |76 | -7 |8 |-10]|79

Rec. ITU-T H.264 (08/2021)

Table 9-30 — Values of variables m and n for ctxldx from 776 to 863

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices ! ;?gefl
ctxldx 1 ctxldx 1
m n m n m n m n m n m n m n m n
776 -6 93 | -13 | 106 | —21 | 126 | —22 | 127 820 -6 93 | -13 | 106 | —21 | 126 | —22 | 127
T -6 84 | —16 | 106 | —23 | 124 | -25 | 127 821 -6 84 | —16 | 106 | —23 | 124 | -25 | 127
778 -8 79 | 10 | 87 | —20 | 110 | —25 | 120 822 -8 79 | 10 | 87 | —20 | 110 | —25 | 120
779 0 66 | —21 | 114 | —26 | 126 | —27 | 127 823 0 66 | —21 | 114 | —26 | 126 | —27 | 127
780 -1 71 | -18 | 110 | —25 | 124 | -19 | 114 824 -1 71 | -18 | 110 | —25 | 124 | -19 | 114
781 0 62 | -14 | 98 | —17 | 105 | —23 | 117 825 0 62 | -14 | 98 | —17 | 105 | —-23 | 117
782 -2 60 | —22 | 110 | —27 | 121 | —25 | 118 826 -2 60 | —22 | 110 | —27 | 121 | —25 | 118
783 -2 59 | =21 | 106 | —27 | 117 | —26 | 117 827 -2 59 | -21 | 106 | —27 | 117 | —26 | 117
784 -5 75 | -18 | 103 | —17 | 102 | —24 | 113 828 -5 75 | -18 | 103 | —17 | 102 | —24 | 113
785 -3 62 | —21 | 107 | —26 | 117 | —28 | 118 829 -3 62 | —21 | 107 | —26 | 117 | —28 | 118
786 -4 58 | —23 | 108 | —27 | 116 | —31 | 120 830 -4 58 | —23 | 108 | —27 | 116 | —31 | 120
787 -9 66 | —26 | 112 | -33 | 122 | —37 | 124 831 -9 66 | —26 | 112 | -33 | 122 | -37 | 124
788 -1 79 | -10 | 96 | 10| 95 | 10 | 94 832 -1 79 | -10 | 96 | 10| 95 | -10 | 94
789 0 71 | -12 | 95 | —-14 | 100 | -15 | 102 833 0 71 | -12 | 95 | —-14 | 100 | -15 | 102
790 3 68 -5 91 -8 95 | -10 | 99 834 3 68 -5 91 -8 95 | -10 | 99
791 10 44 -9 93 | -17 | 111 | —13 | 106 835 10 44 -9 93 | =17 | 111 | -13 | 106
792 -7 62 | 22 | 94 | —28 | 114 | -50 | 127 836 -7 62 | 22 | 94 | —28 | 114 | -50 | 127
793 15 36 -5 86 -6 89 -5 92 837 15 36 -5 86 -6 89 -5 92
794 14 40 9 67 -2 80 17 57 838 14 40 9 67 -2 80 17 57
795 16 27 —4 80 -4 82 -5 86 839 16 27 -4 80 —4 82 -5 86
796 12 29 | -10 | 85 -9 85 | 13 | %4 840 12 29 | -10 | 85 -9 85 | -13 | 9%
797 1 44 -1 70 -8 81 | -12 | 91 841 1 44 -1 70 -8 81 | -12 | 91
798 20 36 7 60 -1 72 -2 77 842 20 36 7 60 -1 72 -2 77
799 18 32 9 58 5 64 0 71 843 18 32 9 58 5 64 0 71
800 5 42 5 61 1 67 -1 73 844 5 42 5 61 1 67 -1 73
801 1 48 12 50 9 56 4 64 845 1 48 12 50 9 56 4 64
802 10 62 15 50 0 69 -7 81 846 10 62 15 50 0 69 -7 81
803 17 46 18 49 1 69 5 64 847 17 46 18 49 1 69 5 64
804 9 64 17 54 7 69 15 57 848 9 64 17 54 7 69 15 57
805 —12 | 104 | 10 41 =7 69 1 67 849 -12 | 104 | 10 41 =7 69 1 67
806 -11 | 97 7 46 -6 67 0 68 850 -11 | 97 7 46 -6 67 0 68

Rec. ITU-T H.264 (08/2021)

243

244

Table 9-30 — Values of variables m and n for ctxldx from 776 to 863

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices ! :I?geSSI
ctxldx 1 ctxldx 1

m n m n m n m n m n m n m n m n
807 -16 | 96 -1 51 | -16 | 77 | 10 | 67 851 -16 | 96 -1 51 | =16 | 77 | -10 | 67
808 -7 88 7 49 -2 64 1 68 852 =7 88 7 49 -2 64 1 68
809 -8 85 8 52 2 61 0 77 853 -8 85 8 52 2 61 0 77
810 =7 85 9 41 -6 67 2 64 854 =7 85 9 41 -6 67 2 64
811 -9 85 6 47 -3 64 0 68 855 -9 85 6 47 -3 64 0 68
812 -13 | 88 2 55 2 57 -5 78 856 -13 | 88 2 55 2 57 -5 78
813 4 66 13 41 -3 65 7 55 857 4 66 13 41 -3 65 7 55
814 -3 77 10 44 -3 66 5 59 858 -3 7 10 44 -3 66 5 59
815 -3 76 6 50 0 62 2 65 859 -3 76 6 50 0 62 2 65
816 —6 76 5 53 9 51 14 54 860 -6 76 5 53 9 51 14 54
817 10 58 13 49 -1 66 15 44 861 10 58 13 49 -1 66 15 44
818 -1 76 4 63 -2 71 5 60 862 -1 76 4 63 -2 71 5 60
819 -1 83 6 64 -2 75 2 70 863 -1 83 6 64 -2 75 2 70

Rec. ITU-T H.264 (08/2021)

Table 9-31 — Values of variables m and n for ctxldx from 864 to 951

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices I jlri]((:jesSI
ctxldx 0 1 ctxldx 0 1

m n m n m n m n m n m n m n m n
864 15 6 14 11 19| 6 | 17 | -13 908 15 6 14 11 | 19| -6 | 17 | —13
865 6 19 11 14 (18| -6 | 16 | -9 909 6 19 11 14 (18| 6 | 16 | -9
866 7 16 9 11 14 0 17 | 12 910 7 16 9 11 | 14 0 17 | 12
867 12 14 18 11 | 26 | -12 | 27 | -21 911 12 14 18 11 | 26 | -12 | 27 | 21
868 18 13 21 9 31| -16 | 37 | =30 912 18 13 21 9 31| -16 | 37 | =30
869 13 11 23 -2 | 33| 25| 41| —40 913 13 11 23 -2 |33 | -25 |41 | —-40
870 13 15 32 | -15 | 33| 22 | 42 | 41 914 13 15 32 | -15 | 33 | —22 | 42 | 41
871 15 16 32 | -15 | 37 | —28 | 48 | —47 915 15 16 32 | 15 | 37 | —28 | 48 | 47
872 12 23 34 | -21 |39 | 30|39 | 32 916 12 23 34 | -21 |39 | -30 |39 | 32
873 13 23 39 | 23 | 42 | -30 | 46 | —40 917 13 23 39 | 23 | 42 | -30 | 46 | 40
874 15 20 42 | -33 | 47 | 42 | 52 | -51 918 15 20 42 | -33 | 47 | -42 | 52 | -51
875 14 26 41 | 31 | 45 | —36 | 46 | 41 919 14 26 41 | -31 | 45 | -36 | 46 | 41
876 14 44 46 | —28 | 49 | -34 | 52 | -39 920 14 44 46 | —28 | 49 | -34 | 52 | -39
877 17 40 38 | -12 | 41 | -17 | 43 | —19 921 17 40 38 | -12 | 41 | -17 | 43 | -19
878 17 47 21 29 | 32 9 32| 11 922 17 47 21 29 | 32 9 32| 11
879 24 17 45 | -24 | 69 | -71 | 61 | -55 923 24 17 45 | -24 | 69 | —71 | 61 | -55
880 21 21 53 | 45 | 63 | -63 | 56 | —46 924 21 21 53 | 45 | 63 | —63 | 56 | —46
881 25 22 48 | -26 | 66 | 64 | 62 | —50 925 25 22 48 | -26 | 66 | —64 | 62 | —50
882 31 27 65 | —43 | 77 | —74 | 81 | —67 926 31 27 65 | —43 | 77 | —74 | 81 | —67
883 22 29 43 | 19 | 54 | -39 | 45 | —20 927 22 29 43 | -19 | 54 | -39 | 45 | —20
884 19 35 39 | -10 | 52 | 35 |35 | -2 928 19 35 39 | -10 | 52 | -35 | 35 | 2
885 14 50 30 9 41 | 10 | 28 | 15 929 14 50 30 9 41 | 10 | 28 | 15
886 10 57 18 26 | 36 0 34 1 930 10 57 18 26 | 36 0 34 1
887 7 63 20 27 |40 | -1 | 39 1 931 7 63 20 27 |40 | -1 | 39 1
888 -2 77 0 57 | 30| 14 | 30| 17 932 -2 77 0 57 |30 | 14 | 30| 17
889 —4 82 | -14 | 82 | 28| 26 | 20 | 38 933 -4 82 | 14| 82 |28 | 26 | 20 | 38
890 -3 94 -5 75 | 23| 37 |18 | 45 934 -3 94 -5 75 | 23| 37 | 18 | 45
891 9 69 | -19 | 97 12 | 55 | 15| 54 935 9 69 | -19 | 97 |12 | 55 | 15| 54
892 —-12 | 109 | =35 | 125 | 11 | 65 0 79 936 -12 | 109 | =35 | 125 | 11 | 65 0 79
893 36 | 35 | 27 0 37 | 33 | 36 | 16 937 36 | 35| 27 0 37 | 33 | 36 | 16
894 36 | 34 | 28 0 39 | -36 | 37 | 14 938 36 | 34 | 28 0 39 | -36 | 37 | 14

Rec. ITU-T H.264 (08/2021)

245

246

Table 9-31 — Values of variables m and n for ctxldx from 864 to 951

I and Sl Value of cabac_init_idc Value of cabac_init_idc
slices I jlri]((:jesSI
ctxldx 0 1 ctxldx 0 1

m n m n m n m n m n m n m n m n
895 32 | -26 | 31 -4 | 40 | 37 | 37 | -17 939 32 | -26 | 31 -4 | 40 | =37 | 37 | 17
896 37 | =30 | 27 6 38 | -30 | 32 1 940 37 | =30 | 27 6 38 | -30 | 32 1
897 44 | =32 | 34 8 46 | -33 | 34 | 15 941 44 | =32 | 34 8 46 | -33 | 34 | 15
898 34 | -18 | 30 10 | 42| -30 | 29 | 15 942 34 | -18 | 30 10 | 42 | 30|29 | 15
899 34 | -15 | 24 22 | 40 | —24 | 24 | 25 943 34 | -15 | 24 22 | 40 | -24 | 24 | 25
900 40 | -15 | 33 19 | 49| -29 | 34 | 22 944 40 | -15 | 33 19 |49 | —29 | 34 | 22
901 33 -7 22 32 |38 |-12 |31 | 16 945 33 -7 22 32 |38 |-12 |31 | 16
902 35 -5 26 31 |40 | -10 | 35| 18 946 35 -5 26 31 |40 | -10 | 35 | 18
903 33 0 21 41 | 38| -3 | 31| 28 947 33 0 21 41 [38| -3 |31 28
904 38 2 26 44 | 46 | -5 | 33| 41 948 38 2 26 44 | 46 | -5 | 33| 41
905 33 13 23 47 | 31| 20 | 36 | 28 949 33 13 23 47 | 31| 20 | 36 | 28
906 23 35 16 65 | 29 | 30 | 27 | 47 950 23 35 16 65 | 29 | 30 | 27 | 47
907 13 58 14 71 | 25| 44 | 21 | 62 951 13 58 14 71 | 25| 44 | 21| 62

Rec. ITU-T H.264 (08/2021)

Table 9-32 — Values of variables m and n for ctxldx from 952 to 1011

I and Sl

Value of cabac_init_idc

Value of cabac_init_idc

slices ! :I?geSSI
ctxldx 1 ctxldx 1
m n m n m n m n m n m n m n m n
952 -3 | 71| -6 | 76 | -23 | 112 | -24 | 115 | 982 -3 | 71| -6 | 76 | —23 | 112 | —24 | 115
953 -6 42 -2 44 | =15 | 71 | 22 | 82 983 -6 42 -2 44 | =15 | 71 | —22 | 82
954 -5 | 50 0 45 | -7 | 61 | -9 | 62 984 -5 | 50 0 45 | -7 | 61 | -9 | 62
955 -3 | 54 0 52 0 53 0 53 985 -3 | 54 0 52 0 53 0 53
956 -2 62 -3 64 -5 66 0 59 986 -2 62 -3 64 -5 66 0 59
957 0 58 | -2 | 59 | 11| 77 | 14| 85 987 0 58 | -2 | 59 | -11 | 77 | -14 | 85
958 1 63 | -4 | 70 | -9 | 80 | 13 | 89 988 1 63 | -4 | 70 | -9 | 80 | —13 | 89
959 -2 72 -4 75 -9 84 | -13 | 94 989 -2 72 —4 75 -9 84 | -13 | 94
960 -1 74 -8 82 | -10 | 87 | 11| 92 990 -1 74 -8 82 | -10 | 87 | -11 | 92
961 -9 | 91 | -17 | 102 | -34 | 127 | -29 | 127 991 -9 | 91 | -17 | 102 | —34 | 127 | —29 | 127
962 -5 67 -9 77 | —21 | 101 | —21 | 100 992 -5 67 -9 77 | —21 | 101 | —21 | 100
963 -5 | 27 3 24 | -3 | 39 | 14| 57 993 -5 | 27 3 24 | -3 | 39 | 14 | 57
964 -3 | 39 0 42 | -5 | 53 | -12 | 67 994 -3 | 39 0 42 | -5 | 53 | -12 | 67
965 -2 44 0 48 =7 61 | -11 | 71 995 -2 44 0 48 =7 61 | -11 | 71
966 0 46 0 55 | -11 | 75 | =10 | 77 996 0 46 0 55 | -11 | 75 | =10 | 77
967 -16 | 64 -6 59 | -15 | 77 | —21 | 85 997 -16 | 64 -6 59 | -15 | 77 | 21 | 85
968 -8 | 68 | -7 | 71 | -17| 91 | 16 | 88 998 -8 | 68 | -7 | 71 | -17 | 91 | -16 | 88
969 -10 | 78 | -12 | 83 | -25 | 107 | -23 | 104 | 999 | -10 | 78 | -12 | 83 | —25 | 107 | —23 | 104
970 -6 77 | -11 | 87 | -25 | 111 | 15 | 98 1000 -6 77 | -11 | 87 | -25 | 111 | -15 | 98
971 -10 | 86 | —30 | 119 | —28 | 122 | —37 | 127 1001 | -10 | 86 | —30 | 119 | —28 | 122 | 37 | 127
972 -12 | 92 1 58 | -11 | 76 | -10 | 82 1002 | -12 | 92 1 58 | -11 | 76 | —-10 | 82
973 -15 | 55 -3 29 | -10 | 44 -8 48 1003 | =15 | 55 -3 29 | -10 | 44 -8 48
974 | -10 | 60 | -1 | 36 | -10 | 52 | -8 | 61 1004 | -10 | 60 | -1 | 36 | -10 | 52 | -8 | 61
975 -6 | 62 1 38 | -10| 57 | -8 | 66 1005 -6 | 62 1 38 | -10| 57 | -8 | 66
976 -4 65 2 43 -9 58 =7 70 1006 -4 65 2 43 -9 58 -7 70
977 -12 | 73 -6 5, | -16 | 72 | -14 | 75 1007 | -12 | 73 -6 5 | 16 | 72 | 14 | 75
978 -8 | 76 0 58 | -7 | 69 | -10 | 79 1008 -8 | 76 0 58 | -7 | 69 | -10 | 79
979 =7 80 0 64 -4 69 -9 83 1009 =7 80 0 64 -4 69 -9 83
980 -9 | 8 | 3 | 74| 5|74 |-12| 92 1010 -9 | 88 | 3| 74| -5 |74 |-12| 92
981 -17 | 110 | -10 | 90 | -9 | 86 | -18 | 108 | 1011 | —17 | 110 | 10 | 90 | -9 | 86 | —18 | 108

Rec. ITU-T H.264 (08/2021)

247

Table 9-33 — Values of variables m and n for ctxldx from 1012 to 1023

I and Sl Value of cabac_init_idc Value of cabac_init_idc
. I and Sl
slices slices
ctxldx 0 1 2 ctxldx 0 1 2
m n m n m n m n m n m n m N m n

1012 -3 70 | -3 74 -2 73 -5 79 1018 | -10 | 90 | -8 87 -9 91 | -11 | 91

1013 -8 93 -9 92 | -12 | 104 | -11 | 104 | 1019 | —30 | 127 | =23 | 126 | —31 | 127 | =30 | 127

1014 | -10 | 90 -8 87 -9 91 | 11| 91 1020 -3 70 -3 74 -2 73 -5 79

1015 | =30 | 127 | —23 | 126 | —31 | 127 | =30 | 127 | 1021 -8 93 -9 92 | -12 | 104 | —11 | 104

1016 -3 70 | -3 74 -2 73 -5 79 1022 | -10 | 90 | -8 87 -9 91 | -11 | 91

1017 -8 93 -9 92 | 12 | 104 | -11 | 104 | 1023 | —30 | 127 | -23 | 126 | =31 | 127 | —30 | 127

9.3.1.2 Initialization process for the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a slice or after the decoding of any
pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

Outputs of this process are the initialized decoding engine registers codlRange and codlOffset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables codlRange and codlOffset. In the initialization
procedure of the arithmetic decoding process, codlRange is set equal to 510 and codlOffset is set equal to the value returned
from read_bits(9) interpreted as a 9 bit binary representation of an unsigned integer with most significant bit written first.

The bitstream shall not contain data that result in a value of codlOffset being equal to 510 or 511.

NOTE — The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit register
precision. However, a minimum register precision of 9 bits is required for storing the values of the variables codlRange and
codlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in clause 9.3.3.2. The arithmetic decoding
process for a binary decision (DecodeDecision) as specified in clause 9.3.3.2.1 and the decoding process for a binary decision before
termination (DecodeTerminate) as specified in clause 9.3.3.2.4 require a minimum register precision of 9 bits for the variables
codIRange and codlOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in clause 9.3.3.2.3
requires a minimum register precision of 10 bits for the variable codlOffset and a minimum register precision of 9 bits for the
variable codIRange.

9.3.2 Binarization process
Input to this process is a request for a syntax element.
Output of this process is the binarization of the syntax element, maxBinldxCtx, ctxldxOffset, and bypassFlag.

Table 9-34 specifies the type of binarization process, maxBinldxCtx, and ctxldxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGK) binarization process, and the fixed-length (FL) binarization process are given in
clauses 9.3.2.1 t0 9.3.2.4, respectively. Other binarizations are specified in clauses 9.3.2.5 t0 9.3.2.7.

Except for I slices, the binarizations for the syntax element mb_type as specified in clause 9.3.2.5 consist of bin strings
given by a concatenation of prefix and suffix bit strings. The UEGKk binarization as specified in clause 9.3.2.3, which is
used for the binarization of the syntax elements mvd_IX (X =0, 1) and coeff_abs_level_minusl, and the binarization of
the coded_block_pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binldx variable as specified further in clause 9.3.3. The
two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and the binarization suffix
part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxldxOffset) variable and a specific value of the maxBinldxCtx variable as given in Table 9-34. When two values for
each of these variables are specified for one syntax element in Table 9-34, the value in the upper row is related to the prefix
part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax element.

The use of the DecodeBypass process and the variable bypassFlag is derived as follows:

248 Rec. ITU-T H.264 (08/2021)

— If no value is assigned to ctxldxOffset for the corresponding binarization or binarization part in Table 9-34 labelled
as "na", all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part are decoded
by invoking the DecodeBypass process as specified in clause 9.3.3.2.3. In such a case, bypassFlag is set equal to 1,
where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the DecodeBypass process
is applied.

— Otherwise, for each possible value of binldx up to the specified value of maxBinldxCtx given in Table 9-34, a specific
value of the variable ctxldx is further specified in clause 9.3.3. bypassFlag is set equal to 0.

The possible values of the context index ctxldx are in the range 0 to 1023, inclusive. The value assigned to ctxldxOffset
specifies the lower value of the range of ctxldx assigned to the corresponding binarization or binarization part of a syntax
element.

ctxldx = ctxldxOffset = 276 is assigned to the syntax element end_of slice_flag and the bin of mb_type, which specifies
the |_PCM macroblock type as further specified in clause 9.3.3.1. For parsing the value of the corresponding bin from the
bitstream, the arithmetic decoding process for decisions before termination (DecodeTerminate) as specified in
clause 9.3.3.2.4 is applied.
NOTE — The bins of mb_type in | slices and the bins of the suffix for mb_type in SI slices that correspond to the same value of
binldx share the same ctxldx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_type in P, SP, and B slices
may share the same ctxldx.

Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffset

Syntax element Type of binarization maxBinldxCtx ctxldxOffset
mb_type prefix and suffix prefix: 0 prefix: 0
(Sl slices only) as specified in clause 9.3.2.5 suffix: 6 suffix: 3
mb_type (I slices only) as specified in clause 9.3.2.5 6 3
mb_skip_flag _
(P, SP slices only) FL, cMax=1 0 1
. prefix and suffix prefix: 2 prefix: 14
mb_type (P, SPslices only) as specified in clause 9.3.2.5 suffix: 5 suffix: 17
sub_mb_type[] e
(P, SP slices only) as specified in clause 9.3.2.5 2 21
mb_skip_flag FL, cMax=1 0 24
(B slices only)
. prefix and suffix prefix: 3 prefix: 27
mb_type (B slices only) as specified in clause 9.3.2.5 suffix: 5 suffix: 32
sub_mb_type[] (B slices only) as specified in clause 9.3.2.5 3 36
prefix: 4 prefix: 40
mvd_{O[][1[0], mvd_IL[][1[0] suffix: na suffix: na (uses DecodeBypass)

prefix and suffix as given by UEG3
with signedValFlag=1, uCoff=9

prefix: 4 prefix: 47

mvd_IO[]LI0], mvd L[]0] suffix: na suffix: na (uses DecodeBypass)
ref_idx_I0, ref_idx_I1 U 2 54
mb_qp_delta as specified in clause 9.3.2.7 2 60
intra_chroma_pred_mode TU, cMax=3 1 64
prev_intra4x4_pred_mode_flag, _ 0 68

prev_intra8x8_pred_mode_flag FL, cMax=1
rem_i_ntra4x4_pred_mode, FL. cMax=7 0 69
rem_intra8x8_pred_mode

mb_field_decoding_flag FL, cMax=1 0 70

Rec. ITU-T H.264 (08/2021) 249

Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffset

Syntax element

Type of binarization

maxBinldxCtx

ctxldxOffset

prefix and suffix prefix: 3 prefix: 73
coded_block_pattern as specified in clause 9.3.2.6 suffix: 1 suffix: 77
coded_block_flag _ 0 85
(blocks with ctxBlockCat < 5) FL, cMax=1
significant_coeff_flag _
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 105
last_significant_coeff_flag _
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 166
coeff_abs_level_minusl prefix and suffix as given by UEGO prefix: 1 prefix: 227
(blocks with ctxBlockCat < 5) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff_sign_flag FL, cMax=1 0 na, (uses DecodeBypass)
end_of slice_flag FL, cMax=1 0 276
significant_coeff_flag _
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 217
last_significant_coeff_flag _
(fiild coded blocks with ctxBlockCat < 5) FL, cMax=1 0 338
transform_size_8x8_flag FL, cMax=1 0 399
significant_coeff_flag _
(frame coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 402
last_significant_coeff_flag _
(frame coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 A
coeff_abs_level_minusl prefix and suffix as given by UEGO prefix: 1 prefix: 426
(blocks with ctxBlockCat = = 5) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff_flag _
(field coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 436
last_significant_coeff_flag _
(field coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 451
coded_block_flag _
(5 < ctxBlockCat < 9) FL, cMax=1 0 460
coded_block_flag _
(9 < ctxBlockCat < 13) FL, cMax=1 0 472
coded_block_flag _
(ctxBlockCat == 5,9, or 13) FL, cMax=1 0 1012
significant_coeff_flag
(frame coded blocks FL, cMax=1 0 484
with 5 < ctxBlockCat < 9)
significant_coeff_flag
(frame coded blocks with FL, cMax=1 0 528
9 < ctxBlockCat < 13)
last_significant_coeff_flag
(frame coded blocks with FL, cMax=1 0 572

5 < ctxBlockCat < 9)

250

Rec. ITU-T H.264 (08/2021)

Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxldxOffset

Syntax element Type of binarization maxBinldxCtx ctxldxOffset
last_significant_coeff_flag
(frame coded blocks with FL, cMax=1 0 616
9 < ctxBlockCat < 13)
coeff_abs_level_minusl prefix and suffix as given by UEGO prefix: 1 prefix: 952
(blocks with 5 < ctxBlockCat < 9) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff_abs_level_minusl prefix and suffix as given by UEGO prefix: 1 prefix: 982
(blocks with 9 < ctxBlockCat < 13) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff_flag _
(field coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 776
significant_coeff_flag
(field coded blocks with FL, cMax=1 0 820
9 < ctxBlockCat < 13)
last_significant_coeff_flag _
(fiield coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 864
last_significant_coeff_flag
(field coded blocks with FL, cMax=1 0 908
9 < ctxBlockCat < 13)
significant_coeff_flag _
(frame coded blocks with ctxBlockCat == 9) FL, cMax=1 0 660
significant_coeff_flag
(frame coded blocks with FL, cMax=1 0 718
ctxBlockCat == 13)
last_significant_coeff_flag _
(frame coded blocks with ctxBlockCat == 9) FL, cMax=1 0 690
last_significant_coeff_flag
(frame coded blocks with FL, cMax=1 0 748
ctxBlockCat == 13)
coeff_abs_level_minusl prefix and suffix as given by UEGO prefix: 1 prefix: 708
(blocks with ctxBlockCat == 9) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff_abs_level_minusl prefix and suffix as given by UEGO prefix: 1 prefix: 766
(blocks with ctxBlockCat == 13) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff_flag _
(field coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 675
significant_coeff_flag _
(fiield coded blocks with ctxBlockCat = = 13) FL, cMax=1 0 733
last_significant_coeff_flag _
(field coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 699
last_significant_coeff_flag _
(fiield coded blocks with ctxBlockCat = = 13) FL, cMax=1 0 757

9.3.2.1 Unary (U) binarization process
Input to this process is a request for a U binarization for a syntax element.
Output of this process is the U binarization of the syntax element.

The bin string of a syntax element having (unsigned integer) value synElVal is a bit string of length synElVal + 1 indexed
by binldx. The bins for binldx less than synEIVal are equal to 1. The bin with binldx equal to synElVal is equal to 0.

Table 9-35 illustrates the bin strings of the unary binarization for a syntax element.

Rec. ITU-T H.264 (08/2021) 251

Table 9-35 — Bin string of the unary binarization (informative)

Value of syntax element Bin string
0 (I_NxN) 0
1 110
2 1110
3 1]11(1]0
4 1]1(1|1|0
5 1(1j1j1]1]0
binldx 0|1]|2|3|4]5

9.3.2.2 Truncated unary (TU) binarization process
Input to this process is a request for a TU binarization for a syntax element and cMax.
Output of this process is the TU binarization of the syntax element.

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in clause 9.3.2.1 is
invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins being equal
to 1.

NOTE — TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization process
Input to this process is a request for a UEGK binarization for a syntax element, signedValFlag and uCoff.
Output of this process is the UEGK binarization of the syntax element.

A UEGKk bin string is a concatenation of a prefix bit string and a suffix bit string. The prefix of the binarization is specified
by invoking the TU binarization process for the prefix part Min(uCoff, Abs(synElVal)) of a syntax element value
synElVal as specified in clause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The variable k for a UEGK bin string is dependent on the syntax element for which a UEGK binarization is requested.
Table 9-34 specifies the associated types of binarization for syntax elements, including the value of k for syntax elements
that use UEGK binarization.

NOTE 1 — For the syntax elements mvd_IO[J[][] and mvd_I1[][][] a UEG3 binarization is used (k is equal to 3). For the syntax
element coeff_abs_level_minusl a UEGO binarization is used (k is equal to 0).

The UEGK bin string is derived as follows:

— If one of the following is true, the bin string of a syntax element having value synEIVal consists only of a prefix bit
string:

— signedValFlag is equal to 0 and the prefix bit string is not equal to the bit string of length uCoff with all bits
equal to 1,

— signedValFlag is equal to 1 and the prefix bit string is equal to the bit string that consists of a single bit with
value equal to 0.

252 Rec. ITU-T H.264 (08/2021)

— Otherwise, the bin string of the UEGKk suffix part of a syntax element value synEIVal is specified by a process
equivalent to the following pseudo-code with k being initialized to the value that is specified in Table 9-34 for the
requested UEGK binarization process. At the beginning of the following pseudo-code, the bin string of a syntax
element having value synEIVal is set equal to the empty string. Each call of the function put(X), with X being equal
to 0 or 1, adds the binary value X at the end of the bin string.

if(Abs(synElVal) >= uCoff) {
sufS = Abs(synElVal) —uCoff
stopLoop =0
do {
if(sufS >= (1<<k)){
put(1)
sufS = sufS — (1<<k)
k++
Telse {
put(0) (9-6)
while(k——)
put((sufS>>k) & 1)
stopLoop =1

}
} while(!stopLoop)

}
if(signedValFlag && synElVal != 0)
if(synElval > 0)

put(0)
else

put(1)

NOTE 2 — The specification for the k-th order Exp-Golomb (EGKk) code uses 1's and 0's in reverse meaning for the unary part of the
Exp-Golomb code of 0-th order as specified in clause 9.1.

9.3.2.4 Fixed-length (FL) binarization process
Input to this process is a request for a FL binarization for a syntax element and cMax.
Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using a fixedLength-bit unsigned integer bin string of the syntax element value, where
fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binldx = O relates to
the least significant bit with increasing values of binldx towards the most significant bit.

9.3.2.5 Binarization process for macroblock type and sub-macroblock type

Input to this process is a request for a binarization for syntax elements mb_type or sub_mb_type[].
Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-36.

For macroblock types in Sl slices, the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by bo = ((mb_type == SI) ? 0:1). For the syntax
element value for which byg is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which bg is equal to 1, the binarization is given by concatenating the prefix bo and the suffix bit string as specified in
Table 9-36 for macroblock type in | slices indexed by subtracting 1 from the value of mb_type in Sl slices.

Rec. ITU-T H.264 (08/2021) 253

Table 9-36 — Binarization for macroblock types in I slices

Value (name) of mb_type | Bin string

0 (I_NxN) 0

1(1_16x16_0_0_0) 1 0 |o 0 |0 0
2(1_16x16_1_0_0) 1 0 0 0 0 1
3(I_16x16_2_0_0) 1 0 |o 0 1 0
4(1_16x16_3 0_0) 1 0 0 0 1 1
5(1_16x16_0_1 0) 1 0 |o 1 |o 0 |o
6 (I_16x16_1 1 0) 1 0 0 1 0 0 1
7(1_16x16_2_1 0) 1 0 0 1 0 1 0
8(1_16x16_3 1 0) 1 0 0 1 0 1 1
9 (1_16x16_0_2_0) 1 0 |o 1 1 0o |o
10 (1_16x16_1_2_0) 1 0 0 1 1 0 1
11 (1_16x16_2_2_0) 1 0 0 1 1 1 0
12 (1_16x16_3_2_0) 1 0 0 1 1 1 1
13 (I_16x16_0_0_1) 1 0 1 0 |o 0

14 (1_16x16_1 0_1) 1 0 1 0 0 1

15 (1_16x16_2 0_1) 1 0 1 0 1 0

16 (1_16x16_3 0_1) 1 0 1 0 1 1

17 (1_16x16_0 1 1) 1 0 1 1 0 0 0
18 (1_16x16_1 1 1) 1 0 1 1 0 0 1
19 (1_16x16_2 1 1) 1 0 1 1 0 1 0
20 (1_16x16_3 1 1) 1 0 1 1 0 1 1
21 (1_16x16_0 2 1) 1 0 1 1 1 0 0
22 (1_16x16_1 2 1) 1 0 1 1 1 0 1
23 (1_16x16_2 2 1) 1 0 1 1 1 1 0
24 (1_16x16_3 2 1) 1 0 1 1 1 1 1
25 (I_PCM) 1 1

binldx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B slices are specified in
Table 9-37.

The bin string for I macroblock types in P and SP slices corresponding to mb_type values 5 to 30 consists of a concatenation
of a prefix, which consists of a single bit with value equal to 1 as specified in Table 9-37 and a suffix as specified in
Table 9-36, indexed by subtracting 5 from the value of mb_type.

mb_type equal to 4 (P_8x8ref0) is not allowed.

For | macroblock types in B slices (mb_type values 23 to 48) the binarization consists of bin strings specified as a
concatenation of a prefix bit string as specified in Table 9-37 and suffix bit strings as specified in Table 9-36, indexed by
subtracting 23 from the value of mb_type.

254 Rec. ITU-T H.264 (08/2021)

Table 9-37 — Binarization for macroblock types in P, SP, and B slices

Slice type | Value (name) of mb_type | Bin string
0 (P_LO_16x16) 0 0
1(P_LO_LO_16x8) 0 1
2 (P_LO_LO_8x16) 0 1

P, SP slice
3 (P_8x8) 0 0
4 (P_8x8ref0) na
5 to 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1 (B_LO_16x16) 1 0
2 (B_L1_16x16) 1 0
3 (B_Bi_16x16) 1 1 0 0 0
4 (B_LO_LO_16x8) 1 1 0 0 1
5(B_LO_LO_8x16) 1 1 0 1 0
6(B_L1 L1 16x8) 1 1 0 1 1
7(B_L1_L1 8x16) 1 1 1 0 0
8(B_LO L1 16x8) 1 1 1 0 1
9(B_LO L1 8x16) 1 1 1 1 0
10 (B_L1_LO_16x8) 1 1 1 1 1
11 (B_L1_LO 8x16) 1 1 1 1 0

B slice
12 (B_LO_Bi_16x8) 1 1 0 0 0 0
13 (B_LO_Bi_8x16) 1 1 0 0 0 1
14 (B_L1_Bi_16x8) 1 1 0 0 1 0
15 (B_L1_Bi_8x16) 1 1 0 0 1 1
16 (B_Bi_L0_16x8) 1 1 0 1 0 0
17 (B_Bi_L0_8x16) 1 1 0 1 0 1
18 (B_Bi_L1_16x8) 1 1 0 1 1 0
19 (B_Bi_L1_8x16) 1 1 0 1 1 1
20 (B_Bi_Bi_16x8) 1 1 1 0 0 0
21 (B_Bi_Bi_8x16) 1 1 1 0 0 1
22 (B_8x8) 1 1 1 1 1
23 to 48 (Intra, prefix only) | 1 1 1 0 1

binldx 0 1 3 4 5 6

For P, SP, and B slices the specification of the binarization for sub_mb_type[] is given in Table 9-38.

Rec. ITU-T H.264 (08/2021)

255

Table 9-38 — Binarization for sub-macroblock types in P, SP, and B slices

Slice type | Value (name) of sub_mb_type[] | Bin string
0 (P_LO_8x8) 1
1 (P_LO_8x4) 0 0
P, SP slice
2 (P_L0O_4x8) 0 1 1
3 (P_LO_4x4) 0 1 0
0 (B_Direct_8x8) 0
1(B_LO_8x8) 1 0 0
2 (B_L1_8x8) 1 0 1
3 (B_Bi_8x8) 1 1 0 0 0
4 (B_LO_8x4) 1 1 0 0 1
5 (B_L0_4x8) 1 1 0 1 0
B slice 6 (B_L1 8x4) 1 1 0 1 1
7 (B_L1 4x8) 1 1 1 0 0 0
8 (B_Bi_8x4) 1 1 1 0 0 1
9 (B_Bi_4x8) 1 1 1 0 1 0
10 (B_LO_4x4) 1 1 1 0 1 1
11 (B_L1_4x4) 1 1 1 1 0
12 (B_Bi_4x4) 1 1 1 1 1
binldx 0 1 2 3 4 5

9.3.2.6 Binarization process for coded block pattern
Input to this process is a request for a binarization for the syntax element coded_block_pattern.
Output of this process is the binarization of the syntax element.

The binarization of coded_block_pattern consists of a prefix part and (when present) a suffix part. The prefix part of the
binarization is given by the FL binarization of CodedBlockPatternLuma with cMax = 15. When ChromaArrayType is not
equal to 0 or 3, the suffix part is present and consists of the TU binarization of CodedBlockPatternChroma with cMax = 2.
The relationship between the value of the syntax element coded_block_pattern and the values of CodedBlockPatternLuma
and CodedBlockPatternChroma is given as specified in clause 7.4.5.

9.3.2.7 Binarization process for mb_qp_delta
Input to this process is a request for a binarization for the syntax element mb_qp_delta.
Output of this process is the binarization of the syntax element.

The bin string of mb_qgp_delta is derived by the U binarization of the mapped value of the syntax element mb_qgp_delta,
where the assignment rule between the signed value of mb_gp_delta and its mapped value is given as specified in Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinldxCtx, bypassFlag and ctxldxOffset as
specified in clause 9.3.2.

Output of this process is the value of the syntax element.

This process specifies how each bit of a bit string is parsed for each syntax element.

256 Rec. ITU-T H.264 (08/2021)

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies:

— If the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.
— Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binldx is incremented by 1 starting with binldx being set equal to O for the first bin.

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part,, the variable
binldx is set equal to 0 for the first bin of each part of the bin string (prefix part or suffix part). In this case, after parsing
the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in clauses 9.3.2.3 and
9.3.2.5 is invoked depending on the resulting prefix bit string as specified in clauses 9.3.2.3 and 9.3.2.5. Note that for the
binarization of the syntax element coded_block_pattern, the suffix bit string is present regardless of the prefix bit string of
length 4 as specified in clause 9.3.2.6.

Depending on the variable bypassFlag, the following applies:

— IfbypassFlag is equal to 1, the bypass decoding process as specified in clause 9.3.3.2.3 is applied for parsing the value
of the bins from the bitstream.

— Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:
1. Given binldx, maxBinldxCtx and ctxldxOffset, ctxldx is derived as specified in clause 9.3.3.1.

2. Given ctxldx, the value of the bin from the bitstream as specified in clause 9.3.3.2 is decoded.

9.3.3.1 Derivation process for ctxldx
Inputs to this process are binldx, maxBinldxCtx and ctxldxOffset.
Output of this process is ctxldx.

Table 9-39 shows the assignment of ctxldx increments (ctxldxInc) to binldx for all ctxldxOffset values except those related
to the syntax elements coded_block_flag, significant_coeff flag, last_significant_coeff flag, and coeff_abs_level minusl.

The ctxldx to be used with a specific binldx is specified by first determining the ctxldxOffset associated with the given
bin string or part thereof. The ctxldx is determined as follows:

— If the ctxldxOffset is listed in Table 9-39, the ctxldx for a binldx is the sum of ctxldxOffset and ctxldxInc, which is
found in Table 9-39. When more than one value is listed in Table 9-39 for a binldx, the assignment process for
ctxldxInc for that binldx is further specified in the clauses given in parenthesis of the corresponding table entry.

— Otherwise (ctxldxOffset is not listed in Table 9-39), the ctxldx is specified to be the sum of the following terms:
ctxldxOffset and ctxldxBlockCatOffset(ctxBlockCat) as specified in Table 9-40 and ctxldxInc(ctxBlockCat).
Clause 9.3.3.1.3 specifies which ctxBlockCat is used. Clause 9.3.3.1.1.9 specifies the assignment of
ctxldxIinc(ctxBlockCat) for coded block flag, and clause 9.3.3.1.3 specifies the assignment of
ctxldxInc(ctxBlockCat) for significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minusl.

All bins with binldx greater than maxBinldxCtx are parsed using the value of ctxldx being assigned to binldx equal to
maxBinldxCtx.

All entries in Table 9-39 labelled with "na" correspond to values of binldx that do not occur for the corresponding
ctxldxOffset.

ctxldx = 276 is assigned to the binldx of mb_type indicating the I_PCM mode. For parsing the value of the corresponding
bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in clause 9.3.3.2.4 is
applied.

Rec. ITU-T H.264 (08/2021) 257

Table 9-39 — Assignment of ctxldxInc to binldx for all ctxldxOffset values except those related to the syntax
elements coded_block_flag, significant_coeff_flag, last_significant_coeff flag, and coeff_abs_level minusl

binldx
ctxldxOffset
0 1 2 3 4 5 >=6
0,1,2
0 (clause 9.3.3.1.1.3) na na na na na na
012 5,6 6,7
’ (clause 9.33.0.1.3) | X ’) 9(§|Zusie2) 9(§Iasuslez) !
1 0,1,2
(clause 9.3.3.1.1.1) na na na na na na
2,3
14 0 1 (clause na na na na
9.33.1.2)
2,3
17 0 ctxldx=276 1 2 (clause 3 3
9.3.3.1.2)
21 0 1 2 na na na na
24 0,1,2
(clause 9.3.3.1.1.1) na na na na na na
27 0.2 3 |4’5 5 5 5 5
(clause 9.3.3.1.1.3) 9%_??2)
2,3
32 0 ctxldx=276 1 2 (clause 3 3
9.3.3.1.2)
2,3
36 0 1 (clause 3 3 3 na
9.3.3.1.2)
40 0.1,2 3 4 5 6 6 6
(clause 9.3.3.1.1.7)
47 0.12 3 4 5 6 6 6
(clause 9.3.3.1.1.7)
54 0123 4 5 5 5 5 5
(clause 9.3.3.1.1.6)
0,1
60 (clause 9.3.3.1.1.5) 2 3 8 3 8 8
64 0.2 3 3
(clause 9.3.3.1.1.8) na na na na
68 0 na na na na na na
69 0 0 0 na na na na
70 0,1,2
(clause 9.3.3.1.1.2) na na na na na na
0123 0,1,2,3 0,1,2,3 0,1,2,3
73 9 3 3 114 (clause (clause (clause na na na
(clause 9.3.3. L. 1.) 1 9.3.3.1.1.4) | 9.33.1.1.4) | 9.3.3.1.1.4)
77 0123 (iISaL?sZ na na na na na
(clause 9.3.3.1.1.4) 9.3.3.1.1.4)
276 0 na na na na na na
399 012
(clause 9.3.3.1.1.10) na na na na na na

258

Rec. ITU-T H.264 (08/2021)

Table 9-40 shows the values of ctxldxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded_block_flag, significant_coeff flag, last_significant_coeff flag, and coeff _abs_level _minusl. The specification of
ctxBlockCat is given in Table 9-42.

Table 9-40 — Assignment of ctxldxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff_flag, last_significant_coeff flag, and coeff_abs_level minusl

ctxBlockCat (as specified in Table 9-42)

Syntax element

coded_block_flag 0|4 8 12 16 0 0 4 8 4 0 4 8 8
significant_coeff_flag 0 |15 | 29 44 47 0 0 15 29 0 0 15 29 0
last_significant_coeff flag | 0 | 15 | 29 44 47 0 0 15 29 0 0 15 29 0

coeff_abs_level_minusl 0 |10 | 20 30 39 0 0 10 20 0 0 10 20 0

9.3.3.1.1 Assignment process of ctxldxInc using neighbouring syntax elements

Clause 9.3.3.1.1.1 specifies the derivation process of ctxldxInc for the syntax element mb_skip_flag.

Clause 9.3.3.1.1.2 specifies the derivation process of ctxldxInc for the syntax element mb_field_decoding_flag.
Clause 9.3.3.1.1.3 specifies the derivation process of ctxldxInc for the syntax element mb_type.

Clause 9.3.3.1.1.4 specifies the derivation process of ctxldxInc for the syntax element coded_block_pattern.
Clause 9.3.3.1.1.5 specifies the derivation process of ctxldxInc for the syntax element mb_qp_delta.

Clause 9.3.3.1.1.6 specifies the derivation process of ctxldxInc for the syntax elements ref_idx_10 and ref _idx_I1.
Clause 9.3.3.1.1.7 specifies the derivation process of ctxldxInc for the syntax elements mvd_I0 and mvd_I1.
Clause 9.3.3.1.1.8 specifies the derivation process of ctxldxInc for the syntax element intra_chroma_pred_mode.
Clause 9.3.3.1.1.9 specifies the derivation process of ctxldxInc for the syntax element coded_block_flag.

Clause 9.3.3.1.1.10 specifies the derivation process of ctxldxInc for the syntax element transform_size 8x8_flag.

9.3.3.1.1.1 Derivation process of ctxldxInc for the syntax element mb_skip_flag
Output of this process is ctxldxInc.

When MbaffFrameFlag is equal to 1 and mb_field decoding_flag has not been decoded (yet) for the current macroblock
pair with top macroblock address 2 * (CurrMbAddr/2), the inference rule for the syntax element
mb_field_decoding_flag as specified in clause 7.4.4 is applied.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:

— If mbAddrN is not available or mb_skip_flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set equal
to 0.

— Otherwise (mbAddrN is available and mb_skip_flag for the macroblock mbAddrN is equal to 0), condTermFlagN is
set equal to 1.

The variable ctxldxInc is derived by:
ctxldxInc = condTermFlagA + condTermFlagB (9-7)

9.3.3.1.1.2 Derivation process of ctxldxInc for the syntax element mb_field_decoding_flag

Output of this process is ctxldxInc.

Rec. ITU-T H.264 (08/2021) 259

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames as specified in
clause 6.4.10 is invoked and the output is assigned to mbAddrA and mbAddrB.

When both macroblocks mbAddrN and mbAddrN + 1 have mb_type equal to P_Skip or B_Skip, the inference rule for the
syntax element mb_field_decoding_flag as specified in clause 7.4.4 is applied for the macroblock mbAddrN.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to O:

— mbAddrN is not available,

— the macroblock mbAddrN is a frame macroblock.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB (9-8)

9.3.3.1.1.3 Derivation process of ctxldxInc for the syntax element mb_type
Input to this process is ctxldxOffset.
Output of this process is ctxldxInc.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to O:

— mbAddrN is not available,

— ctxldxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to S,

— ctxldxOffset is equal to 3 and mb_type for the macroblock mbAddrN is equal to I_NXxN,

— ctxldxOffset is equal to 27 and mb_type for the macroblock mbAddrN is equal to B_Skip or B_Direct_16x16.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived as

ctxldxInc = condTermFlagA + condTermFlagB (9-9)

9.3.3.1.1.4 Derivation process of ctxldxInc for the syntax element coded_block_pattern
Inputs to this process are ctxldxOffset and binldx.

Output of this process is ctxldxInc.

Depending on the value of the variable ctxldxOffset, the following ordered steps are specified:
— If ctxldxOffset is equal to 73, the following applies:

1. The derivation process for neighbouring 8x8 luma blocks specified in clause 6.4.11.2 is invoked with
luma8x8Blkldx = binldx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BIkldxA, and
luma8x8BIlkIdxB.

2. Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to 0:
— mbAddrN is not available,
— mb_type for the macroblock mbAddrN is equal to |_PCM,

— the macroblock mbAddrN is not the current macroblock CurrMbAddr and the macroblock mbAddrN
does not have mb_type equal to P_Skip or B_Skip, and
((CodedBlockPatternLuma >> luma8x8BIkldxN) & 1) is not equal to0 for the value of
CodedBlockPatternLuma for the macroblock mbAddrN,

260 Rec. ITU-T H.264 (08/2021)

— the macroblock mbAddrN is the current macroblock CurrMbAddr and the prior decoded bin value by
of coded_block_pattern with k = luma8x8BIkldxN is not equal to 0.

— Otherwise, condTermFlagN is set equal to 1.

3. The variable ctxldxInc is derived as

ctxldxInc = condTermFlagA + 2 * condTermFlagB (9-10)

— Otherwise (ctxldxOffset is equal to 77), the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

2. Let the variable condTermFlagN (with N being either A or B) be derived as follows:

— If mbAddrN is available and mb_type for the macroblock mbAddrN is equal to I_PCM, condTermFlagN is
set equal to 1.

— Otherwise, if any of the following conditions are true, condTermFlagN is set equal to O:

— mbAddrN is not available or the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

— binldx is equal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to O,

— binldx is equal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2.
— Otherwise, condTermFlagN is set equal to 1.

3. The variable ctxldxInc is derived as
ctxldxInc = condTermFlagA + 2 * condTermFlagB + ((binldx == 1)?4:0) (9-11)

NOTE — When a macroblock is coded in Intra_16x16 macroblock prediction mode, the values of CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock are derived from mb_type as specified in Table 7-11.

9.3.3.1.1.5 Derivation process of ctxldxInc for the syntax element mb_qp_delta
Output of this process is ctxldxInc.

Let prevMbAddr be the macroblock address of the macroblock that precedes the current macroblock in decoding order.
When the current macroblock is the first macroblock of a slice, prevMbAddr is marked as not available.

Let the variable ctxldxInc be derived as follows:

— If any of the following conditions are true, ctxldxInc is set equal to 0:
— prevMbAddr is not available or the macroblock prevMbAddr has mb_type equal to P_Skip or B_Skip,
— mb_type of the macroblock prevMbAddr is equal to |_PCM,

— The macroblock prevMbAddr is not coded in Intra_16x16 macroblock prediction mode and both
CodedBlockPatternLuma and CodedBlockPatternChroma for the macroblock prevMbAddr are equal to 0O,

— mb_qgp_delta for the macroblock prevMbAddr is equal to 0.

— Otherwise, ctxldxInc is set equal to 1.

9.3.3.1.1.6 Derivation process of ctxldxInc for the syntax elements ref _idx_10 and ref_idx_I1
Input to this process is mbPartldx.

Output of this process is ctxldxInc.

The interpretation of ref_idx_IX and Pred_LX within this clause is specified as follows:

— If this process is invoked for the derivation of ref_idx_l0, ref idx_IX is interpreted as ref idx_10 and Pred LX is
interpreted as Pred LO.

— Otherwise (this process is invoked for the derivation of ref_idx_I1), ref_idx_IX is interpreted as ref_idx_I1 and
Pred_LX is interpreted as Pred_L1.

The derivation process for neighbouring partitions specified in clause 6.4.11.7 is invoked with mbPartldx, currSubMbType
set equal to sub_mb_type[mbPartldx], and subMbPartldx=0 as input and the output is assigned to
mbAddrA\mbPartldxA and mbAddrB\mbPartldxB.

Rec. ITU-T H.264 (08/2021) 261

With ref_idx_IX[mbPartldxN] (with N being either A or B) specifying the syntax element for the macroblock mbAddrN,
let the variable refldxZeroFlagN be derived as follows:

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock,

refldxZeroFlagN = ((ref_idx_IX[mbPartldxN]>1)?0:1) (9-12)
— Otherwise,
refldxZeroFlagN = ((ref_idx_IX[mbPartldxN]>0)?0:1) (9-13)

Let the variable predModeEqualFlagN be specified as follows:

— If mb_type for the macroblock mbAddrN is equal to B_Direct_16x16 or B_Skip, predModeEqualFlagN is set equal
to 0.

— Otherwise, if the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies:

— If SubMbPredMode(sub_mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb_type specifies the syntax element list for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
— Otherwise, the following applies:

— If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred_LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to O:

mbAddrN is not available,

— the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,
— the macroblock mbAddrN is coded in an Intra macroblock prediction mode,
— predModeEqualFlagN is equal to O,
— refldxZeroFlagN is equal to 1.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived as
ctxldxInc = condTermFlagA + 2 * condTermFlagB (9-14)

9.3.3.1.1.7 Derivation process of ctxldxInc for the syntax elements mvd_l0 and mvd_I1
Inputs to this process are mbPartldx, subMbPartldx, and ctxldxOffset.

Output of this process is ctxldxInc.

The interpretation of mvd_IX and Pred_LX within this clause is specified as follows:

— If this process is invoked for the derivation of mvd_I0, mvd_IX is interpreted as mvd_I0 and Pred_L X is interpreted
as Pred_LO.

— Otherwise (this process is invoked for the derivation of mvd_I1), mvd_IX is interpreted as mvd_I1 and Pred_LX is
interpreted as Pred L1.

The derivation process for neighbouring partitions specified in clause 6.4.11.7 is invoked with mbPartldx, currSubMbType
set equal to sub_mb_type[mbPartldx], and subMbPartldx as input and the output is assigned to
mbAddrA\mbPartldxA\subMbPartldxA and mbAddrB\mbPartldxB\subMbPartldxB.

Let the variable compldx be derived as follows:

262 Rec. ITU-T H.264 (08/2021)

If ctxldxOffset is equal to 40, compldx is set equal to 0.

Otherwise (ctxldxOffset is equal to 47), compldx is set equal to 1.

Let the variable predModeEqualFlagN be specified as follows:

If mb_type for the macroblock mbAddrN is equal to B_Direct_16x16 or B_Skip, predModeEqualFlagN is set equal
to 0.

Otherwise, if the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies:

— If SubMbPredMode(sub_mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb_type specifies the syntax element list for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
Otherwise, the following applies:

— If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred_LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.

Let the variable absMvdCompN (with N being either A or B) be derived as follows:

If any of the following conditions are true, absMvdCompN is set equal to O:
— mbAddrN is not available,
— the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

the macroblock mbAddrN is coded in an Intra macroblock prediction mode,

— predModeEqualFlagN is equal to 0.
Otherwise, the following applies:

— If compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the
macroblock mbAddrN is a field macroblock,

absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) * 2 (9-15)

— Otherwise, if compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a field macroblock,
and the macroblock mbAddrN is a frame macroblock,

absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) /2 (9-16)
— Otherwise,
absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) (9-17)

The variable ctxldxInc is derived as follows:

If absMvdCompA is greater than 32 or absMvdCompA is greater than 32, ctxldxInc is set equal to 2.
Otherwise, if absMvdCompA + absMvdCompB is greater than 32, ctxldxInc is set equal to 2.
Otherwise, if absMvdCompA + absMvdCompB is greater than 2, ctxldxInc is set equal to 1.

Otherwise (absMvdCompA + absMvdCompB is less than or equal to 2), ctxldxInc is set equal to 0.

NOTE — Although the above form of expression for the derivation of ctxldxInc could have been somewhat simplified, the form
shown above was selected to assist the reader in avoiding a potential dynamic range problem in the derivation process.

9.3.3.1.1.8 Derivation process of ctxldxInc for the syntax element intra_chroma_pred_mode

Output of this process is ctxldxInc.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being replaced by either A or B) be derived as follows:

Rec. ITU-T H.264 (08/2021) 263

If any of the following conditions are true, condTermFlagN is set equal to O:

mbAddrN is not available,

The macroblock mbAddrN is coded in an Inter macroblock prediction mode,

mb_type for the macroblock mbAddrN is equal to I_PCM,

intra_chroma_pred_mode for the macroblock mbAddrN is equal to 0.

Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived by:

ctxldxInc = condTermFlagA + condTermFlagB (9-18)

9.3.3.1.1.9 Derivation process of ctxldxInc for the syntax element coded_block flag

Input to this process is ctxBlockCat and additional input is specified as follows:

If ctxBlockCat is equal to 0, 6, or 10, no additional input.

Otherwise, if ctxBlockCat is equal to 1 or 2, luma4x4Blkldx.

Otherwise, if ctxBlockCat is equal to 3, the chroma component index iChCr.

Otherwise, if ctxBlockCat is equal to 4, chroma4x4Blkldx and the chroma component index iCbCr.

Otherwise, if ctxBlockCat is equal to 5, luma8x8BIkldx.

Otherwise, if ctxBlockCat is equal to 7 or 8, ch4x4BIkldx.

Otherwise, if ctxBlockCat is equal to 9, ch8x8BIkldx.

Otherwise, if ctxBlockCat is equal to 11 or 12, cr4x4BIkldx.
Otherwise (ctxBlockCat is equal to 13), cr8x8BIlkldx.

Output of this process is ctxldxInc(ctxBlockCat).

Let the variable transBlockN (with N being either A or B) be derived as follows:

264

If ctxBlockCat is equal to 0, 6, or 10, the following ordered steps are specified:

1.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 macroblock prediction
mode, the following applies:

— IfctxBlockCat is equal to 0, the luma DC block of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, if ctxBlockCat is equal to 6, the Cb DC block of macroblock mbAddrN is assigned to
transBlockN.

— Otherwise (ctxBlockCat is equal to 10), the Cr DC block of macroblock mbAddrN is assigned to
transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 1 or 2, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 luma blocks specified in clause 6.4.11.4 is invoked with
lumadx4BIkldx as input and the output is assigned to mbAddrN, luma4x4BIkldxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >> (luma4x4BIkldxN >>2)) & 1) is not equal to O for the
macroblock mbAddrN, and transform_size_8x8 flag is equal to 0 for the macroblock mbAddrN, the 4x4
luma block with index luma4x4BIkldxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip or
B_Skip, ((CodedBlockPatternLuma >> (luma4x4BIkldxN >>2)) & 1) is not equal to O for the

Rec. ITU-T H.264 (08/2021)

macroblock mbAddrN, and transform_size_8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8
luma block with index (luma4x4BIkldxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 3, the following ordered steps are specified:

1.

2.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, and CodedBlockPatternChroma is not equal to 0 for the macroblock mbAddrN, the chroma DC
block of chroma component iCbCr of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 4, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 chroma blocks specified in clause 6.4.11.5 is invoked with
chroma4x4BIKkldx as input and the output is assigned to mbAddrN, chroma4x4BIkldxN (with N being either A
or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, the 4x4 chroma block
with chromadx4BIkldxN of the chroma component iCbCr of macroblock mbAddrN is assigned to
transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 5, the following ordered steps are specified:

1.

The derivation process for neighbouring 8x8 luma blocks specified in clause 6.4.11.2 is invoked with
luma8x8Blkldx as input and the output is assigned to mbAddrN, luma8x8BIkldxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >>luma8x8BIkldx) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 luma block
with index luma8x8BIkldxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to7 or 8, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 Cb blocks specified in clause 6.4.11.5 is invoked with
ch4x4Blkldx as input and the output is assigned to mbAddrN, cb4x4BIkldxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >> (cb4x4BIkldxN >>2)) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 0 for the macroblock mbAddrN, the 4x4 Cb block
with index ch4x4BIkldxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip or
B_Skip, ((CodedBlockPatternLuma >> (cbh4x4BlkldxN >>2)) & 1) is not equal toO for the
macroblock mbAddrN, and transform_size _8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8
Cb block with index (cb4x4BIkldxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 9, the following ordered steps are specified:

1.

2.

The derivation process for neighbouring 8x8 Cb blocks specified in clause 6.4.11.3 is invoked with
ch8x8Blkldx as input and the output is assigned to mbAddrN, cb8x8BIklIdxN (with N being either A or B).

The variable transBlockN is derived as follows:

Rec. ITU-T H.264 (08/2021) 265

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >>ch8x8Blkldx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cb block
with index cb8x8BIkldxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 11 or 12, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 Cr blocks specified in clause 6.4.11.5 is invoked with cr4x4Blkldx
as input and the output is assigned to mbAddrN, crdx4BIkldxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >> (cr4x4BIkldxN >>2)) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size_8x8 flag is equal to 0 for the macroblock mbAddrN, the 4x4 Cr block with
index cr4x4BlkldxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip or
B_SKip, ((CodedBlockPatternLuma >> (cr4x4BIkldxN >>2)) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size_8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block with
index (crd4x4BIkldxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise (ctxBlockCat is equal to 13), the following ordered steps are specified:

1.

2.

The derivation process for neighbouring 8x8 Cr blocks specified in clause 6.4.11.3 is invoked with cr8x8BIkldx
as input and the output is assigned to mbAddrN, cr8x8BIkldxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM,, ((CodedBlockPatternLuma >>cr8x8BIkldx) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size_8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block with
index cr8x8BlklIdxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:

If any of the following conditions are true, condTermFlagN is set equal to O:

mbAddrN is not available and the current macroblock is coded in an Inter macroblock prediction mode,

mbAddrN is available and transBlockN is not available and mb_type for the macroblock mbAddrN is not equal
to |_PCM,

The current macroblock is coded in an Intra macroblock prediction mode, constrained_intra_pred_flag is equal
to 1, the macroblock mbAddrN is available and coded in an Inter macroblock prediction mode, and slice data
partitioning is in use (nal_unit_type is in the range of 2 through 4, inclusive).

Otherwise, if any of the following conditions are true, condTermFlagN is set equal to 1:

mbAddrN is not available and the current macroblock is coded in an Intra macroblock prediction mode,

mb_type for the macroblock mbAddrN is equal to I_PCM.

Otherwise, condTermFlagN is set equal to the value of the coded_block_flag of the transform block transBlockN that
was decoded for the macroblock mbAddrN.

The variable ctxldxInc(ctxBlockCat) is derived by

ctxldxInc(ctxBlockCat) = condTermFlagA + 2 * condTermFlagB (9-19)

9.3.3.1.1.10 Derivation process of ctxldxInc for the syntax element transform_size 8x8 flag

Output of this process is ctxldxInc.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

266

Rec. ITU-T H.264 (08/2021)

Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to O:

— mbAddrN is not available,

— transform_size_8x8_flag for the macroblock mbAddrN is equal to 0.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxldxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB (9-20)

9.3.3.1.2 Assignment process of ctxldxInc using prior decoded bin values

Inputs to this process are ctxldxOffset and binldx.

Output of this process is ctxldxInc.

Table 9-41 contains the specification of ctxldxInc for the given values of ctxldxOffset and binldx.

For each value of ctxldxOffset and binldx, ctxldxInc is derived by using some of the values of prior decoded bin values
('bo, b1, by,..., bk), where the value of the index k is less than the value of binldx.

Table 9-41 — Specification of ctxldxInc for specific values of ctxldxOffset and binldx

Value (name) of ctxldxOffset | binldx ctxldxInc

4 (b3 1= 0)?5:6
3

5 (bs '= 0)?26:7
14 2 (by 1= 1)22:3
17 4 (bs 1= 0)?22:3
27 2 (by 1= 0)?4:5
32 4 (bs '= 0)?2:3
36 2 (by 1= 0)?2:3

9.3.3.1.3 Assignment process of ctxldxInc for syntax elements significant_coeff flag, last_significant_coeff flag,
and coeff_abs_level _minusl

Inputs to this process are ctxldxOffset and binldx.
Output of this process is ctxldxInc.

The assignment process of ctxldxinc for syntax elements significant_coeff flag, last_significant_coeff flag, and
coeff_abs_level _minusl as well as for coded_block_flag depends on categories of different blocks denoted by the variable
ctxBlockCat. The specification of these block categories is given in Table 9-42.

Rec. ITU-T H.264 (08/2021) 267

Table 9-42 — Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff | ctxBlockCat
block of luma DC transform coefficient levels 16 0
(i.e., list Intral6x16DCLevel as described in clause 7.4.5.3)
block of luma AC transform coefficient levels 15 1
(i.e., list Intral6x16ACLevel[i] as described in clause 7.4.5.3)
block of 16 luma transform coefficient levels 16 2
(i.e., list LumaLevel4x4[i] as described in clause 7.4.5.3)
block of chroma DC transform coefficient levels when ChromaArrayType is equal to 1 or 2 4% NUMCSx8 3
(i.e., list ChromaDCLevel as described in clause 7.4.5.3)
block of chroma AC transform coefficient levels when ChromaArrayType is equal to 1 or 2 15 4
(i.e., list ChromaACLevel as described in clause 7.4.5.3)
block of 64 luma transform coefficient levels 64 5
(i.e., list LumaLevel8x8[i] as described in clause 7.4.5.3)
block of Cb DC transform coefficient levels when ChromaArrayType is equal to 3 16 6
(i.e., list Chintral6x16DCLevel as described in clause 7.4.5.3)
block of Cb AC transform coefficient levels when ChromaArrayType is equal to 3 15 7
(i.e., list ChiIntral6x16ACLevel[i] as described in clause 7.4.5.3)
block of 16 Cb transform coefficient levels when ChromaArrayType is equal to 3 16 8
(i.e., list CbLevel4x4][i] as described in clause 7.4.5.3)
block of 64 Cb transform coefficient levels when ChromaArrayType is equal to 3 64 9
(i.e., list CbLevel8x8[i] as described in clause 7.4.5.3)
block of Cr DC transform coefficient levels when ChromaArrayType is equal to 3 16 10
(i.e., list Crintral6x16DCLevel as described in clause 7.4.5.3)
block of Cr AC transform coefficient levels when ChromaArrayType is equal to 3 15 1
(i.e., list Crintral6x16 ACLevel[i] as described in clause 7.4.5.3)
block of 16 Cr transform coefficient levels when ChromaArrayType is equal to 3 16 12
(i.e., list CrLevel4x4[i] as described in clause 7.4.5.3)
block of 64 Cr transform coefficient levels when ChromaArrayType is equal to 3 64 13
(i.e., list CrLevel8x8[i] as described in clause 7.4.5.3)

Let the variable levelListldx be set equal to the index of the list of transform coefficient levels as specified in clause 7.4.5.3.

For the syntax elements significant_coeff flag and last_significant_coeff flag in blocks with ctxBlockCat not equal to 3,
5, 9, and 13, the variable ctxldxInc is derived by

ctxldxInc = levelListldx (9-21)

where levelListldx ranges from 0 to maxNumCoeff — 2, inclusive.

For the syntax elements significant_coeff flag and last_significant_coeff flag in blocks with ctxBlockCat == 3, the
variable ctxldxInc is derived by

ctxldxInc = Min(levelListldx / NumC8x8, 2) (9-22)

where levelListldx ranges from 0 to 4 * NumC8x8 — 2, inclusive.

For the syntax elements significant_coeff flag and last_significant_coeff flag in 8x8 luma, Cb, or Cr blocks with
ctxBlockCat == 5,9, or 13, Table 9-43 contains the specification of ctxldxInc for the given values of levelListldx, where
levelListldx ranges from 0 to 62, inclusive.

268 Rec. ITU-T H.264 (08/2021)

Table 9-43 — Mapping of scanning position to ctxldxInc for ctxBlockCat == 5,9, or 13

Bely 109 uednyiubis 1se|
10} 2UIXPIX10

o ™ o o ™ o o o <t <t <t <t <t <t <t <t w0 n n w0 [{o] © © O ~ M~ ~ ~
(sx120]019BW Pap0I plaLy)
Bely 1a0d uedlyubis
10} QUIXPIX10
o o — N — o o o o o o ™ ™ o o < <t
(o] (o)) i — (e 0] i — i (o] o i — (e o] i — (o)) o — — [ee] — i (o] » i — A —
(590]q0.49BW PapoI swel))
Bely yao0d uedlubis
10} QUIXPIX10
i N o i <t o — N [90] — <t o i N o i
N~ [{o] i — i i [{e] N~ [ee] » i — (o)) [e] [{e] — i — — © [e)] i — » i — — i
XPI1IsIT1[8As|
(9N (a2} <t n (e} N~ [e0] D o — N o™ <t 0 [{e] N~ [e) (o] o — o o <t n (e} N~ o] (o]
o ™ o (92} ™ o (92} [9p] <t <t <t <t <t <t <t <t <t <t Yol wn Yol [Te] Yol n n Yol o (Yol
Beyy 1209 Juedipiubis 1se|
10} QUIXPIX19
o — — — — — — — — — — — — — — — N [9V] N N [9V] N N N N (V] [qV] [a\]
(sx90]q049BW Pap0oI plaly)
Bely ya0d juedlpubis
10} QUIXPIX19
o o — N — o o
o — — N (V] o o < Yol [{e] ~ N~ ~ o] <t Yol [{e] o — — [e 0] — — — ()} o — —
(s>20]g0J2BW Pap0o9 swe.y)
Bel) Ya0d juedlyubis
10} QUIXPIX19
o — [9\] o < n o < <t ™ [9p] <t < < Lo n < < < < o [9p] [{e] N~ ~ M~ [oe] (2]
XP1IsI|ans|
o — [qV] o <t [Te] [{e] N~ 0] ()] o — N ™ < Te] (o] ~
o — N o <t n [{e] ~ [e 0] o i — — i — — i — — i N N N N N N N N

269

Rec. ITU-T H.264 (08/2021)

Table 9-43 — Mapping of scanning position to ctxldxInc for ctxBlockCat == 5,9, or 13
/(;)\ ~— o ’(;)\ ~~ [@)]
X 9 < 4 @) <
X = X I
g 3 g3 b g8 g3 il
= o = = = = o == =
> - I © - Ig - < - I © - I-g - o
5 SEE | 852 | &38| 3 Sg5 | e€5¢e | &3
- 0 O © o o 8) | - 0O O ®© o o 8 S} |
k%) € o€ colg c ¥ X7 € o E CU|§ c =
- < X X @ - > < X &
T | E58 | £E§53 | 8&| T | E§8 | 8§ | £
3 < S 3 < S © =< = 3 < S 3 < S T = =
= © E O T E 8 o o = S E © T E 8 S
c o = ‘D cC o c ‘D
2 £ o3 I 2 £ 23 [
S o 2 @] o Q2 @
= = i = = o]
28 10 8 60 14 14
29 9 11 61 10 14
30 8 12 62 12 14
31 7 11

Let numDecodAbsLevelEq1 denote the accumulated number of decoded transform coefficient levels with absolute value
equal to 1, and let numDecodAbsLevelGtl denote the accumulated number of decoded transform coefficient levels with
absolute value greater than 1. Both numbers are related to the same transform coefficient block, where the current decoding
process takes place. Then, for decoding of coeff_abs_level minusl, ctxldxInc for coeff _abs level minusl is specified
depending on binldx as follows:

— If binldx is equal to 0, ctxldxInc is derived by

ctxldxInc = ((numDecodAbsLevelGtl !'= 0) ? 0: Min(4, 1 + numDecodAbsLevelEql)) (9-23)
— Otherwise (binldx is greater than 0), ctxldxInc is derived by
ctxldxIinc =5+ Min(4 — ((ctxBlockCat == 3) ? 1 : 0), numDecodAbsLevelGtl) (9-24)

9.3.3.2 Arithmetic decoding process

Inputs to this process are the bypassFlag, ctxldx as derived in clause 9.3.3.1, and the state variables codlRange and
codlOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-2 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index ctxldx is passed to the arithmetic decoding process DecodeBin(ctxldx), which is specified as follows:

— If bypassFlag is equal to 1, DecodeBypass() as specified in clause 9.3.3.2.3 is invoked.

— Otherwise, if bypassFlag is equal to 0 and ctxldx is equal to 276, DecodeTerminate() as specified in clause 9.3.3.2.4
is invoked.

— Otherwise (bypassFlag is equal to 0 and ctxldx is not equal to 276), DecodeDecision() as specified in clause 9.3.3.2.1
is applied.

270 Rec. ITU-T H.264 (08/2021)

< DecodeBin(ctxldx) >

bypassFlag Yes
==1? v
DecodeBypass

Yes

ctxldx==276? o
DecodeTerminate
DecodeDecision(ctxldx)

le v

Done
H.264(09)_F9-2

Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)

NOTE - Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and
p(1)=1-p(0)ofabinary decision (0, 1), an initially given code sub-interval with the range codIRange will be subdivided into
two sub-intervals having range p(0) * codlRange and codIRange — p(0) * codIRange, respectively. Depending on the decision,
which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing
into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most probable
symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, rather than
0 or 1. Given this terminology, each context is specified by the probability pLes of the LPS and the value of MPS (valMPS), which
is either O or 1.

The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

— The probability estimation is performed by means of a finite-state machine with a table-based transition process between 64
different representative probability states { prrs(pStateldx) |0 <= pStateldx <64 } for the LPS probability pies. The
numbering of the states is arranged in such a way that the probability state with index pStateldx =0 corresponds to an LPS
probability value of 0.5, with decreasing LPS probability towards higher state indices.

— The range codIRange representing the state of the coding engine is quantized to a small set {Qu,...,Q4} of pre-set quantization
values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed product values of
Qi * pLes(pStateldx) allows a multiplication-free approximation of the product codlRange * pLps(pStateldx).

— For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a
separate simplified encoding and decoding bypass process is used.

9.3.3.2.1 Arithmetic decoding process for a binary decision
Inputs to this process are ctxldx, codIRange, and codlOffset.
Outputs of this process are the decoded value binVal, and the updated variables codIRange and codlOffset.
Figure 9-3 shows the flowchart for decoding a single decision (DecodeDecision):
1. The value of the variable codlRangeLPS is derived as follows:

— Given the current value of codlRange, the variable gCodIRangeldx is derived by
gCodIRangeldx =(codIRange >>6) & 3 (9-25)

— Given gCodlRangeldx and pStateldx associated with ctxldx, the value of the variable rangeTabLPS as
specified in Table 9-44 is assigned to codIRangeLPS:

codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx] (9-26)

Rec. ITU-T H.264 (08/2021) 271

2. The variable codlRange is set equal to codlRange — codlRangeLPS and the following applies:

— If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 — valMPS, codlOffset
is decremented by codIRange, and codlRange is set equal to codIRangeLPS.

— Otherwise, the variable binVal is set equal to valMPS.

Given the value of binVal, the state transition is performed as specified in clause 9.3.3.2.1.1. Depending on the current
value of codIRange, renormalization is performed as specified in clause 9.3.3.2.2.

9.3.3.2.1.1 State transition process

Inputs to this process are the current pStateldx, the decoded value binVal and valMPS values of the context variable
associated with ctxldx.

Outputs of this process are the updated pStateldx and valMPS of the context variable associated with ctxldx.

Depending on the decoded value binVal, the update of the two variables pStateldx and valMPS associated with ctxldx is
derived as specified by the following pseudo-code:

if(binvVal == valMPS)
pStateldx = transldxMPS(pStateldx)
else { (9-27)
if(pStateldx == 0)
valMPS =1 — vaIMPS
pStateldx = transldxLPS(pStateldx)

¥

Table 9-45 specifies the transition rules transldxMPS() and transldxLPS() after decoding the value of valMPS and
1 — valMPS, respectively.

272 Rec. ITU-T H.264 (08/2021)

< DecodeDecision (ctxIdx) >

v

qCodIRangeldx = (codIRange>>6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codIRange = codIRange - codIRangeLPS

codlOffset >= codIRange

A 4 A 4

binVal = lvalMPS
codIOffset = codIOffset — codIRange
codIRange = cod[RangeLPS

binVal = valMPS
pStateldx = transldxMPS[pStateldx]

Yes

pStateldx = 0? v

valMPS = 1 — valMPS

No

&
<
y

A

pStateldx = transIdxLPS[pStateldx]

v

RenormD

H.264(09)_F9-3

Figure 9-3 — Flowchart for decoding a decision

Rec. ITU-T H.264 (08/2021)

273

Table 9-44 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldx

gCodlRangeldx gCodIRangeldx
pStateldx pStateldx

0 1 2 3 0 1 2 3

0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 7 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

274

Rec. ITU-T H.264 (08/2021)

Table 9-45 — State transition table

pStateldx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
transldxLPS 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transldxMPS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStateldx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

transldxLPS 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24

transldxMPS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pStateldx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

transldxLPS 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33

transldxMPS | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

pStateldx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

transldxLPS 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63

transldxMPS | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

9.3.3.2.2 Renormalization process in the arithmetic decoding engine
Inputs to this process are bits from slice data and the variables codIRange and codlOffset.
Outputs of this process are the updated variables codIRange and codlOffset.

A flowchart of the renormalization is shown in Figure 9-4. The current value of codIRange is first compared to 256 and
further steps are specified as follows:

— If codIRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished;

— Otherwise (codIRange is less than 256), the renormalization loop is entered. Within this loop, the value of codIRange
is doubled, i.e., left-shifted by 1 and a single bit is shifted into codlOffset by using read_bits(1).

The bitstream shall not contain data that result in a value of codlOffset being greater than or equal to codlRange upon

completion of this process.
< RenormD >

codlRange < 256

codlRange = codIRange << 1 No
codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)

Done
H.264(09)_F9-4

Figure 9-4 — Flowchart of renormalization

Rec. ITU-T H.264 (08/2021) 275

9.3.3.2.3 Bypass decoding process for binary decisions
Inputs to this process are bits from slice data and the variables codIRange and codlOffset.
Outputs of this process are the updated variable codlOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-5 shows a flowchart of the corresponding
process.

First, the value of codlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codlOffset by using
read_bits(1). Then, the value of codlOffset is compared to the value of codlRange and further steps are specified as
follows:

— If codlOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 and codlOffset is decremented
by codlRange.

— Otherwise (codlOffset is less than codIRange), the variable binVal is set equal to 0.

The bitstream shall not contain data that result in a value of codlOffset being greater than or equal to codlRange upon

completion of this process.
< DecodeBypass >
v

codIOffset = codIOffset << 1
codIOffset = codIOffset | read bits(1)

Yes codlOffset >= No

l codIRange l

binVal = 1
codIOffset = codIOffset - cod[Range

H.264(09)_F9-5

Figure 9-5 — Flowchart of bypass decoding process

binVal =0

9.3.3.2.4 Decoding process for binary decisions before termination
Inputs to this process are bits from slice data and the variables codlRange and codlOffset.
Outputs of this process are the updated variables codlRange and codlOffset, and the decoded value binVal.

This special decoding routine applies to decoding of end_of slice_flag and of the bin indicating the 1_PCM mode
corresponding to ctxldx equal to 276. Figure 9-6 shows the flowchart of the corresponding decoding process, which is
specified as follows.

First, the value of codlRange is decremented by 2. Then, the value of codlOffset is compared to the value of codlRange
and further steps are specified as follows:

— If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1, no renormalization is carried
out, and CABAC decoding is terminated. The last bit inserted in register codlOffset is equal to 1. When decoding
end_of slice_flag, this last bit inserted in register codlOffset is interpreted as rbsp_stop_one_bit.

— Otherwise (codlOffset is less than codlRange), the variable binVal is set equal to 0 and renormalization is performed
as specified in clause 9.3.3.2.2.

NOTE — This procedure may also be implemented using DecodeDecision(ctxldx) with ctxldx = 276. In the case where
the decoded value is equal to 1, seven more bits would be read by DecodeDecision(ctxldx) and a decoding process would
have to adjust its bitstream pointer accordingly to properly decode following syntax elements.

276 Rec. ITU-T H.264 (08/2021)

< DecodeTerminate >

v

codlRange = codIRange-2

codlOffset >= codlRange

binVal = 1 binvVal =0
v
RenormD

“ H.264(09)_F9-6

Figure 9-6 — Flowchart of decoding a decision before termination

9.3.4 Arithmetic encoding process (informative)

This clause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are decisions that are to be encoded and written.

Outputs of this process are bits that are written to the RBSP.

This informative clause describes an arithmetic encoding engine that matches the arithmetic decoding engine described in
clause 9.3.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures are called in the
same order. The following procedures are described in this section: InitEncoder, EncodeDecision, EncodeBypass,
EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and DecodeTerminate,
respectively. The state of the arithmetic encoding engine is represented by a value of the variable codlLow pointing to the
lower end of a sub-interval and a value of the variable codlRange specifying the corresponding range of that sub-interval.

9.3.4.1 Initialization process for the arithmetic encoding engine (informative)
This clause does not form an integral part of this Recommendation | International Standard.

This process is invoked before encoding the first macroblock of a slice, and after encoding any pcm_alignment_zero_bit
and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

Outputs of this process are the values codlLow, codIRange, firstBitFlag, bitsOutstanding, and BinCountsInNALunits of
the arithmetic encoding engine.

In the initialization procedure of the encoder, codlLow is set equal to 0, and codIRange is set equal to 510. Furthermore,
firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to O.

Depending on whether the current slice is the first slice of a coded picture, the following applies:
— Ifthe current slice is the first slice of a coded picture, the counter BinCountsInNALunits is set equal to 0.

— Otherwise (the current slice is not the first slice of a coded picture), the counter BinCountsInNALunits is not modified.
The value of BinCountsInNALunits is the result of encoding all the slices of a coded picture that precede the current
slice in decoding order. After initializing for the first slice of a coded picture as specified in this clause,
BinCountsInNALunits is incremented as specified in clauses 9.3.4.2, 9.3.4.4, and 9.3.4.5.

NOTE — The minimum register precision required for storing the values of the variables codlLow and codlRange after invocation
of any of the arithmetic encoding processes specified in clauses 9.3.4.2, 9.3.4.4, and 9.3.4.5 is 10 bits and 9 bits, respectively. The
encoding process for a binary decision (EncodeDecision) as specified in clause 9.3.4.2 and the encoding process for a binary decision
before termination (EncodeTerminate) as specified in clause 9.3.4.5 require a minimum register precision of 10 bits for the variable
codILow and a minimum register precision of 9 bits for the variable codIRange. The bypass encoding process for binary decisions

Rec. ITU-T H.264 (08/2021) 277

(EncodeBypass) as specified in clause 9.3.4.4 requires a minimum register precision of 11 bits for the variable codlLow and a
minimum register precision of 9 bits for the variable codlRange. The precision required for the counters bitsOutstanding and
BinCountsInNALunits should be sufficiently large to prevent overflow of the related registers. When maxBinCountInSlice denotes
the maximum total number of binary decisions to encode in one slice and maxBinCountInPic denotes the maximum total number of
binary decisions to encode a picture, the minimum register precision required for the variables bitsOutstanding and
BinCountsInNALunits is given by Ceil(Log2(maxBinCountInSlice +1)) and Ceil(Log2(maxBinCountInPic + 1)),
respectively.

9.3.4.2 Encoding process for a binary decision (informative)
This clause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the context index ctxldx, the value of binVal to be encoded, and the variables codIRange, codlLow
and BinCountsInNALunits.

Outputs of this process are the variables codIRange, codlLow, and BinCountsInNALunits.

Figure 9-7 shows the flowchart for encoding a single decision. In a first step, the variable codIlRangeLPS is derived as
follows.

Given the current value of codlRange, codlRange is mapped to the index gCodIRangeldx of a quantized value of
codlRange by using Equation 9-25. The value of qCodIRangeldx and the value of pStateldx associated with ctxldx are
used to determine the value of the variable rangeTabLPS as specified in Table 9-44, which is assigned to codIRangeLPS.
The value of codIRange — codlRangeLPS is assigned to codlRange.

In a second step, the value of binVal is compared to valMPS associated with ctxldx. When binVal is different from valMPS,
codlRange is added to codlLow and codlRange is set equal to the value codIRangeLPS. Given the encoded decision, the
state transition is performed as specified in clause 9.3.3.2.1.1. Depending on the current value of codlRange,
renormalization is performed as specified in clause 9.3.4.3. Finally, the variable BinCountsInNALunits is incremented
by 1.

278 Rec. ITU-T H.264 (08/2021)

<EncodeDecision(ctxldx,binVaI)>
v

gCodIRangeldx = (codIRange >> 6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codlRange = codIRange — codIRangeLPS

binVal !=
valMPS

A 4

codlLow = codlLow + codIRange
codIRange = codIRangeLPS

y

pStateldx =0

valMPS = 1 — valMPS
Yes
< I
v v
pStateldx = transldxLPS[pStateldx] pStateldx = transldxMPS[pStateldx]

[|

v
RenormE

v

BinCountsInNALunits = BinCountsInNALunits + 1

m H.264(09)_F9-7

Figure 9-7 — Flowchart for encoding a decision

9.3.4.3 Renormalization process in the arithmetic encoding engine (informative)
This clause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are the variables codIRange, codlLow, firstBitFlag, and bitsOutstanding.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codIRange, codlLow,
firstBitFlag, and bitsOutstanding.

Rec. ITU-T H.264 (08/2021) 279

Renormalization is illustrated in Figure 9-8.

&

<

No Yes
codlRange < 256

Yes
codlLow < 256

No

codlLow = codlLow — 256
bitsOutstanding = bitsOutstanding + 1

A 4

PutBit(0)

No

codlLow >=512

Yes

codlLow = codlLow — 512

v

PUtBit(1)

A 4

codIRange = codIRange << 1
codlLow = codlLow << 1

v 1

‘ Done)

H.264(09)_F9-8

Figure 9-8 — Flowchart of renormalization in the encoder

The PutBit() procedure described in Figure 9-9 provides carry over control. It uses the function WriteBits(B, N) that
writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes
the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the

encoding process.

280 Rec. ITU-T H.264 (08/2021)

PutBit(B)

firstBitFlag
=0

firstBitFlag = 0 WriteBits(B, 1)

Yes

v

WriteBits(1 — B, 1)
bitsOutstanding = bitsOutstanding — 1

H.264(09)_F9-9

Figure 9-9 — Flowchart of PutBit(B)

9.3.4.4 Bypass encoding process for binary decisions (informative)
This clause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are the variables binVal, codlLow, codlRange, bitsOutstanding, and BinCountsInNALunits.

Output of this process is a bit written to the RBSP and the updated variables codlLow, bitsOutstanding, and
BinCountsInNALunits.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the
specification of this process as given in Figure 9-10.

Rec. ITU-T H.264 (08/2021) 281

< EncodeBypass(binVal) >

v

codlLow = codlLow << 1

Yes No

A\ 4

codlLow = codlLow + codlRange

codlLow >=
1024

PutBit(1)

!

PutBit(0) codlLow = codlLow — 1024

A 4

codlLow = codlLow — 512
bitsOutstanding = bitsOutstanding + 1

A 4

BinCountsInNALunits = BinCountsInNALunits +1

Done
H.264(09)_F9-10

Figure 9-10 — Flowchart of encoding bypass

9.3.4.5 Encoding process for a binary decision before termination (informative)
This clause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are the variables binVal, codIRange, codlLow, bitsOutstanding, and BinCountsInNALunits.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codlLow, codlRange,
bitsOutstanding, and BinCountsInNALunits.

This encoding routine shown in Figure 9-11 applies to encoding of the end_of slice_flag and of the bin indicating the
I_PCM mb_type both associated with ctxldx equal to 276.

282 Rec. ITU-T H.264 (08/2021)

< EncodeTerminate(binVal) >

v

codIRange = codIRange — 2

codlLow = codIlLow + codIRange

v

EncodeFlush

RenormE

v

BinCountsInNALunits = BinCountsInNALunits + 1

H.264(09)_F9-11

Figure 9-11 — Flowchart of encoding a decision before termination

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in
Figure 9-12 is applied. In this flushing procedure, the last bit written by WriteBits(B, N) is equal to 1. When encoding
end_of_slice_flag, this last bit is interpreted as the rbsp_stop_one_bit.

EncodeFlush

codlRange = 2
v

RenormE

v
PutBit((codlLow >>9) & 1)

v
WriteBits(((codlLow >>7) & 3) | 1, 2)

“ H.264(09)_F9-12

Figure 9-12 — Flowchart of flushing at termination

Rec. ITU-T H.264 (08/2021) 283

9.3.4.6 Byte stuffing process (informative)
This clause does not form an integral part of this Recommendation | International Standard.
This process is invoked after encoding the last macroblock of the last slice of a picture and after encapsulation.

Inputs to this process are the number of bytes NumBytesInVcINALunits of all VCL NAL units of a picture, the number of
macroblocks PicSizelnMbs in the picture, and the number of binary symbols BinCountsInNALunits resulting from
encoding the contents of all VCL NAL units of the picture.

NOTE — The value of BinCountsInNALunits is the result of encoding all slices of a coded picture. After initializing for the first slice
of a coded picture as specified in clause 9.3.4.1, BinCountsInNALunits is incremented as specified in clauses 9.3.4.2, 9.3.4.4, and
9.3.45.

Outputs of this process are zero or more bytes appended to the NAL unit.

Let the variable k be set equal to Ceil((Ceil(3 * (32 * BinCountsInNALunits — RawMbBits * PicSizeInMbs) + 1024) —
NumBytesInVcINALunits) + 3). Depending on the variable k the following applies:

— Ifkis less than or equal to 0, no cabac_zero_word is appended to the NAL unit.

— Otherwise (K is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after encapsulation,
where the first two bytes 0x0000 represent a cabac_zero_word and the third byte 0x03 represents an
emulation_prevention_three_byte.

284 Rec. ITU-T H.264 (08/2021)

Annex A

Profiles and levels

(This annex forms an integral part of this Recommendation | International Standard.)

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the bitstreams.
Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE 1 — This Recommendation | International Standard does not include individually selectable "options™ at the decoder, as this
would increase interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to that
profile.
NOTE 2 — Encoders are not required to make use of any particular subset of features supported in a profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this
Recommendation | International Standard. The same set of level definitions is used with all profiles, but individual
implementations may support a different level for each supported profile. For any given profile, levels generally correspond
to decoder processing load and memory capability.

The profiles that are specified in clause A.2 are also referred to as the profiles specified in Annex A.

Al Requirements on video decoder capability

Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the
ability to decode video streams conforming to the constraints of profiles and levels specified in this annex. For each such
profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile_idc and level_idc. All other values of profile_idc
and level_idc are reserved for future use by ITU-T | ISO/IEC.

NOTE — Decoders should not infer that when a reserved value of profile_idc or level_idc falls between the values specified in this
Recommendation | International Standard that this indicates intermediate capabilities between the specified profiles or levels, as
there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A.2 Profiles

All constraints for picture parameter sets that are specified in clauses A.2.1to A.2.11 are constraints for picture parameter
sets that are activated in the bitstream. All constraints for sequence parameter sets that are specified in clauses A.2.1 to
A.2.11 are constraints for sequence parameter sets that are activated in the bitstream.

A.2.1 Baseline profile

Bitstreams conforming to the Baseline profile shall obey the following constraints:

— Only I and P slice types may be present.

— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
— Sequence parameter sets shall have frame_mbs_only_flag equal to 1.

— The syntax elements chroma_format _idc, bit_depth_luma_minus8, bit_depth_chroma_minus8,
gpprime_y_zero_transform_bypass_flag, and seq_scaling_matrix_present flag shall not be present in sequence
parameter sets.

— Picture parameter sets shall have weighted_pred_flag and weighted_bipred_idc both equal to 0.
— Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
— Picture parameter sets shall have num_slice_groups_minusl in the range of 0 to 7, inclusive.

— The syntax elements transform_8x8_mode_flag, pic_scaling_matrix_present flag, and
second_chroma_gp_index_offset shall not be present in picture parameter sets.

— The syntax element level_prefix shall not be greater than 15 (when present).

— The syntax elements pcm_sample luma[i], with 1=0.255 and pcm_sample chroma[i], with
i =0..2 * MbWidthC * MbHeightC — 1, shall not be equal to 0 (when present).

— The level constraints specified for the Baseline profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the Baseline profile is indicated by profile_idc being equal to 66.

Rec. ITU-T H.264 (08/2021) 285

Decoders conforming to the Baseline profile at a specific level shall be capable of decoding all bitstreams in which
profile_idc is equal to 66 or constraint_set0_flag is equal to 1 and in which level_idc and constraint_set3_flag represent a
level less than or equal to the specified level.

A.2.1.1 Constrained Baseline profile

Bitstreams conforming to the Constrained Baseline profile shall obey all constraints specified in clause A.2.1 for the
Baseline profile and all constraints specified in clause A.2.2 for the Main profile.

Conformance of a bitstream to the Constrained Baseline profile is indicated by profile_idc being equal to 66 with
constraint_setl flag being equal to 1.

NOTE — This specification of the Constrained Baseline profile is technically identical to specification of the use of the Baseline
profile with constraint_setl flag equal to 1. Thus, any existing specifications (in other documents that reference this
Recommendation | International Standard) that have referred to the use of the Baseline profile with constraint_set1_flag equal to 1
should thus be interpreted as continuing in force as being technically identical to referring to the use of the Constrained Baseline
profile (without any need for revision of these existing specifications to instead refer explicitly to the use of the Constrained Baseline
profile).

Decoders conforming to the Constrained Baseline profile at a specific level shall be capable of decoding all bitstreams in
which all of the following are true:

— profile_idc is equal to 66 or constraint_set0_flag is equal to 1,

— constraint_setl_flag is equal to 1,

— level_idc and constraint_set3_flag represent a level less than or equal to the specified level.

A.2.2 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:

— Only I, P, and B slice types may be present.

— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
— Arbitrary slice order is not allowed.

— The syntax elements chroma_format _idc, bit_depth_luma_minus8, bit_depth_chroma_minus8,
gpprime_y_zero_transform_bypass_flag, and seq_scaling_matrix_present_flag shall not be present in sequence
parameter sets.

— Picture parameter sets shall have num_slice_groups_minusl equal to 0 only.
— Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

— The syntax elements transform_8x8_mode_flag, pic_scaling_matrix_present_flag, and
second_chroma_gp_index_offset shall not be present in picture parameter sets.

— The syntax element level_prefix shall not be greater than 15 (when present).

— The syntax elements pcm_sample luma[i], with i=0.255 and pcm_sample chroma[i], with
i =0..2 * MbWidthC * MbHeightC — 1, shall not be equal to 0 (when present).

— The level constraints specified for the Main profile in clause A.3 shall be fulfilled.
Conformance of a bitstream to the Main profile is indicated by profile_idc being equal to 77.

Decoders conforming to the Main profile at a specified level shall be capable of decoding all bitstreams in which profile_idc
is equal to 77 or constraint_setl flag is equal to 1 and in which level_idc and constraint_set3 flag represent a level less
than or equal to the specified level.

A.2.3 Extended profile

Bitstreams conforming to the Extended profile shall obey the following constraints:
— Sequence parameter sets shall have direct_8x8_inference_flag equal to 1.

— The syntax elements chroma_format_idc, bit_depth_luma_minus8, bit_depth_chroma_minus8,
gpprime_y_zero_transform_bypass_flag, and seq_scaling_matrix_present_flag shall not be present in sequence
parameter sets.

— Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
— Picture parameter sets shall have num_slice_groups_minusl in the range of 0 to 7, inclusive.

— The syntax elements transform_8x8_mode_flag, pic_scaling_matrix_present_flag, and
second_chroma_gp_index_offset shall not be present in picture parameter sets.

— The syntax element level_prefix shall not be greater than 15 (when present).

286 Rec. ITU-T H.264 (08/2021)

— The syntax elements pcm_sample_luma[i], with i=0..255 and pcm_sample chroma[i], with
i =0..2 * MbWidthC * MbHeightC — 1, shall not be equal to 0 (when present).

— The level constraints specified for the Extended profile in clause A.3 shall be fulfilled.
Conformance of a bitstream to the Extended profile is indicated by profile_idc being equal to 88.

Decoders conforming to the Extended profile at a specified level shall be capable of decoding all bitstreams in which
profile_idc is equal to 88 or constraint_set2_flag is equal to 1 and in which level_idc represents a level less than or equal
to specified level.

Decoders conforming to the Extended profile at a specified level shall also be capable of decoding all bitstreams in which
profile_idc is equal to 66 or constraint_setO_flag is equal to 1, in which level_idc and constraint_set3_flag represent a level
less than or equal to the specified level.

A.2.4 High profile

Bitstreams conforming to the High profile shall obey the following constraints:

— Only I, P, and B slice types may be present.

— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
— Arbitrary slice order is not allowed.

— Picture parameter sets shall have num_slice_groups_minusl1 equal to 0 only.

— Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

— Sequence parameter sets shall have chroma_format_idc in the range of O to 1 inclusive.
— Sequence parameter sets shall have bit_depth_luma_minus8 equal to 0 only.

— Sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0 only.

— Sequence parameter sets shall have gpprime_y zero_transform_bypass_flag equal to 0 only.
— The level constraints specified for the High profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High profile is indicated by profile_idc being equal to 100. Decoders conforming to the
High profile at a specific level shall be capable of decoding all bitstreams in which either or both of the following conditions
are true:

— (profile_idc is equal to 77 or constraint_setl flag is equal to 1) and the combination of level idc and
constraint_set3_flag represent a level less than or equal to the specified level,

— profile_idc is equal to 100 and level_idc represents a level less than or equal to the specified level.

NOTE — The value 100 for profile_idc indicates that the bitstream conforms to the High profile as specified in this clause. When
profile_idc is equal to 100 and constraint_set3_flag is equal to 1, this indicates that the bitstream conforms to the High profile and
additionally conforms to the constraints specified for the High 10 Intra profile in clause A.2.8. For example, such a bitstream must
have bit_depth_luma_minus8 equal to 0, have bit_depth_chroma_minus8 equal to 0, obey the MinCR, MaxBR and MaxCPB
constraints of the High profile, contain only IDR pictures, have max_num_ref_frames equal to 0, have dpb_output_delay equal to 0,
and obey the maximum slice size constraint of the High 10 Intra profile.

A.2.4.1 Progressive High profile

Bitstreams conforming to the Progressive High profile shall obey all constraints specified in clause A.2.4 for the High
profile, and shall additionally obey the constraint that sequence parameter sets shall have frame_mbs_only_flag equal to 1.

Conformance of a bitstream to the Progressive High profile is indicated by profile_idc being equal to 100 with
constraint_set4_flag being equal to 1.

Decoders conforming to the Progressive High profile at a specific level shall be capable of decoding all bitstreams in which
one or more of the following conditions are true:

- (profile_idc is equal to 66 or constraint_setO_flag is equal to 1), constraint_setl flag is equal to 1, and the combination
of level_idc and constraint_set3_flag represents a level less than or equal to the specified level.

— profile_idc is equal to 77, constraint_set0_flag is equal to 1, and the combination of level_idc and constraint_set3 flag
represents a level less than or equal to the specified level.

- profile_idc is equal to 77, constraint_set4 flag is equal to 1, and the combination of level_idc and constraint_set3 flag
represents a level less than or equal to the specified level.

- profile_idc is equal to 88, constraint_setl_flag is equal to 1, constraint_set4_flag is equal to 1, and the combination of
level_idc and constraint_set3_flag represents a level less than or equal to the specified level.

- profile_idc is equal to 100, constraint_set4 flag is equal to 1, and level_idc represents a level less than or equal to the
specified level.

Rec. ITU-T H.264 (08/2021) 287

A.2.4.2 Constrained High profile

Bitstreams conforming to the Constrained High profile shall obey all constraints specified in clause A.2.4.1 for the
Progressive High profile, and shall additionally obey the constraint that B slice types shall not be present.

Conformance of a bitstream to the Constrained High profile is indicated by profile_idc being equal to 100 with both
constraint_set4 flag and constraint_set5_flag being equal to 1.

Decoders conforming to the Constrained High profile at a specific level shall be capable of decoding all bitstreams in
which one or more of the following conditions are true:

- (profile_idc is equal to 66 or constraint_setO_flag is equal to 1), constraint_setl flag is equal to 1, and the combination
of level_idc and constraint_set3_flag represents a level less than or equal to the specified level.

— profile_idc is equal to 77, constraint_set0_flag is equal to 1, and the combination of level_idc and constraint_set3 flag
represents a level less than or equal to the specified level.

- profile_idc isequal to 77, constraint_set4_flag is equal to 1, constraint_set5 flag is equal to 1, and level_idc represents
a level less than or equal to the specified level.

- profile_idc is equal to 88, constraint_setl flag is equal to 1, constraint_set4 flag is equal to 1, constraint_set5 flag is
equal to 1, and the combination of level_idc and constraint_set3_flag represents a level less than or equal to the
specified level.

- profile_idc is equal to 100, constraint_set4 flag is equal to 1, constraint_set5 flag is equal to 1, and level_idc
represents a level less than or equal to the specified level.

A.25 High 10 profile

Bitstreams conforming to the High 10 profile shall obey the following constraints:

— Only I, P, and B slice types may be present.

— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.

— Arbitrary slice order is not allowed.

— Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.

— Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

— Sequence parameter sets shall have chroma_format_idc in the range of 0 to 1 inclusive.

— Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 2 inclusive.
— Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 2 inclusive.
— Sequence parameter sets shall have gpprime_y_zero_transform_bypass_flag equal to 0 only.
— The level constraints specified for the High 10 profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High 10 profile is indicated by profile_idc being equal to 110. Decoders conforming to
the High 10 profile at a specific level shall be capable of decoding all bitstreams in which either or both of the following
conditions are true:

— (profile_idc is equal to 77 or constraint_setl flag is equal to 1) and the combination of level idc and
constraint_set3_flag represent a level less than or equal to the specified level,

— profile_idc is equal to 100 or 110 and level_idc represents a level less than or equal to the specified level.

A.2.5.1 Progressive High 10 profile

Bitstreams conforming to the Progressive High 10 profile shall obey all constraints specified in clause A.2.5 for the
High 10 profile, and shall additionally obey the constraint that sequence parameter sets shall have frame_mbs_only flag
equal to 1.

Conformance of a bitstream to the Progressive High 10 profile is indicated by profile_idc being equal to 110 with
constraint_set4_flag being equal to 1.

Decoders conforming to the Progressive High 10 profile at a specific level shall be capable of decoding all bitstreams in
which one or more of the following conditions are true:

— (profile_idc is equal to 66 or constraint_set0_flag is equal to 1), constraint_set1 flag is equal to 1, and the combination
of level_idc and constraint_set3_flag represents a level less than or equal to the specified level.

— profile_idcis equal to 77, constraint_set0_flag is equal to 1, and the combination of level_idc and constraint_set3 flag
represents a level less than or equal to the specified level.

288 Rec. ITU-T H.264 (08/2021)

— profile_idc is equal to 77, constraint_set4 flag is equal to 1, and the combination of level_idc and constraint_set3 flag
represents a level less than or equal to the specified level.

— profile_idc is equal to 88, constraint_setl flag is equal to 1, constraint_set4 flag is equal to 1, and the combination
of level_idc and constraint_set3_flag represents a level less than or equal to the specified level.

— profile_idc is equal to 100 or 110, constraint_set4 flag is equal to 1, and level_idc represents a level less than or equal
to the specified level.

A.2.6 High 4:2:2 profile

Bitstreams conforming to the High 4:2:2 profile shall obey the following constraints:

— Only I, P, and B slice types may be present.

— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.

— Arbitrary slice order is not allowed.

— Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.

— Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

— Sequence parameter sets shall have chroma_format_idc in the range of 0 to 2 inclusive.

— Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 2 inclusive.
— Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 2 inclusive.
— Sequence parameter sets shall have gpprime_y zero_transform_bypass_flag equal to 0 only.
— The level constraints specified for the High 4:2:2 profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:2:2 profile is indicated by profile_idc being equal to 122. Decoders conforming
to the High 4:2:2 profile at a specific level shall be capable of decoding all bitstreams in which either or both of the
following conditions are true:

— (profile_idc is equal to77 or constraint_setl flag is equal to 1) and the combination of level idc and
constraint_set3_flag represent a level less than or equal to the specified level,

— profile_idc is equal to 100, 110, or 122 and level_idc represents a level less than or equal to the specified level.

A.2.7 High 4:4:4 Predictive profile

Bitstreams conforming to the High 4:4:4 Predictive profile shall obey the following constraints:

— Only I, P, B slice types may be present.

— NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.

— Arbitrary slice order is not allowed.

— Picture parameter sets shall have num_slice_groups_minusl equal to 0 only.

— Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.

— Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 6 inclusive.

— Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 6 inclusive.

— The level constraints specified for the High 4:4:4 Predictive profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:4:4 Predictive profile is indicated by profile_idc being equal to 244. Decoders
conforming to the High 4:4:4 Predictive profile at a specific level shall be capable of decoding all bitstreams in which
either or both of the following conditions are true:

— (profile_idc is equal to 77 or constraint_setl flag is equal to 1) and the combination of level_idc and
constraint_set3_flag represent a level less than or equal to the specified level,

— profile_idc is equal to 44, 100, 110, 122, or 244 and the value of level_idc represents a level less than or equal to the
specified level.

A.2.8 High 10 Intra profile

Bitstreams conforming to the High 10 Intra profile shall obey the following constraints:
— All constraints specified in clause A.2.5 for the High 10 profile shall be obeyed.

— All pictures shall be IDR pictures.

— Sequence parameter sets shall have max_num_ref_frames equal to 0.

Rec. ITU-T H.264 (08/2021) 289

— When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter sets
shall have max_num_reorder_frames equal to 0.

— When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter sets
shall have max_dec_frame_buffering equal to 0.

— Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed equivalently by
other means not specified in this Recommendation | International Standard, shall have dpb_output_delay equal to 0.

— The level constraints specified for the High 10 Intra profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High 10 Intra profile is indicated by constraint_set3 flag being equal to 1 with
profile_idc equal to 110. Decoders conforming to the High 10 Intra profile at a specific level shall be capable of decoding
all bitstreams in which all of the following conditions are true:

— profile_idc is equal to 100 or 110,
— constraint_set3_flag is equal to 1,

— level_idc represents a level less than or equal to the specified level.

NOTE 1 - The value 100 for profile_idc indicates that the bitstream conforms to the High profile as specified in clause A.2.4. When
profile_idc is equal to 100 and constraint_set3_flag is equal to 1, this indicates that the bitstream conforms to the High profile and
additionally conforms to the constraints specified for the High 10 Intra profile in this clause. For example, such a bitstream must
have bit_depth_luma_minus8 equal to 0, have bit_depth_chroma_minus8 equal to 0, obey the MinCR, MaxBR and MaxCPB
constraints of the High profile, contain only IDR pictures, have max_num_ref_frames equal to 0, have dpb_output_delay equal to 0,
and obey the maximum slice size constraint of the High 10 Intra profile.

The operation of the deblocking filter process specified in clause 8.7 is not required for decoder conformance to the
High 10 Intra profile.

NOTE 2 — The deblocking filter process specified in clause 8.7 or some similar post-processing filter should be performed, although
this is not a requirement for decoder conformance to the High 10 Intra profile. The syntax elements sent by an encoder for control
of the deblocking filter process specified in clause 8.7 are considered only as advisory information for decoders conformance to the
High 10 Intra profile. However, the application of the deblocking filter process specified in clause 8.7 is required for decoder
conformance to the High 10, High 4:2:2, and High 4:4:4 Predictive profiles when decoding bitstreams that conform to the High 10
Intra profile.

A.2.9 High 4:2:2 Intra profile

Bitstreams conforming to the High 4:2:2 Intra profile shall obey the following constraints:
— All constraints specified in clause A.2.6 for the High 4:2:2 profile shall be obeyed.
— All pictures shall be IDR pictures.

— Sequence parameter sets shall have max_num_ref_frames equal to 0.

— When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter sets
shall have max_num_reorder_frames equal to 0.

— When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter sets
shall have max_dec_frame_buffering equal to 0.

— Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed equivalently by
other means not specified in this Recommendation | International Standard, shall have dpb_output_delay equal to 0.

— The level constraints specified for the High 4:2:2 Intra profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:2:2 Intra profile is indicated by constraint_set3 flag being equal to 1 with
profile_idc equal to 122. Decoders conforming to the High 4:2:2 Intra profile at a specific level shall be capable of decoding
all bitstreams in which all of the following conditions are true:

— profile_idc is equal to 100, 110, or 122,
— constraint_set3_flag is equal to 1,
— level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in clause 8.7 is not required for decoder conformance to the
High 4:2:2 Intra profile.

NOTE — The deblocking filter process specified in clause 8.7 or some similar post-processing filter should be performed, although
this is not a requirement for decoder conformance to the High 4:2:2 Intra profile. The syntax elements sent by an encoder for control
of the deblocking filter process specified in clause 8.7 are considered only as advisory information for decoders conformance to the
High 4:2:2 Intra profile. However, the application of the deblocking filter process specified in clause 8.7 is required for decoder
conformance to the High 4:2:2, and High 4:4:4 Predictive profiles when decoding bitstreams that conform to the High 4:2:2 Intra
profile.

290 Rec. ITU-T H.264 (08/2021)

A.2.10 High 4:4:4 Intra profile

Bitstreams conforming to the High 4:4:4 Intra profile shall obey the following constraints:

— All constraints specified in clause A.2.7 for the High 4:4:4 Predictive profile shall be obeyed.
— Al pictures shall be IDR pictures.

— Sequence parameter sets shall have max_num_ref_frames equal to 0.

— When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter sets
shall have max_num_reorder_frames equal to 0.

— When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter sets
shall have max_dec_frame_buffering equal to 0.

— Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed equivalently by
other means not specified in this Recommendation | International Standard, shall have dpb_output_delay equal to 0.

— The level constraints specified for the High 4:4:4 Intra profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:4:4 Intra profile is indicated by constraint_set3 flag being equal to 1 with
profile_idc equal to 244. Decoders conforming to the High 4:4:4 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true:

— profile_idc is equal to 44, 100, 110, 122, or 244,
— constraint_set3_flag is equal to 1,
— level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in clause 8.7 is not required for decoder conformance to the
High 4:4:4 Intra profile.

NOTE — The deblocking filter process specified in clause 8.7 or some similar post-processing filter should be performed, although
this is not a requirement for decoder conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. The syntax elements sent
by an encoder for control of the deblocking filter process specified in clause 8.7 are considered only as advisory information for
decoders conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. However, the application of the deblocking filter
process specified in clause 8.7 is required for decoder conformance to the High 4:4:4 Predictive profile when decoding bitstreams
that conform to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles.

A.2.11 CAVLC 4:4:4 Intra profile

Bitstreams conforming to the CAVLC 4:4:4 Intra profile shall obey the following constraints:

— All constraints specified in clause A.2.10 for the High 4:4:4 Intra profile shall be obeyed.

— Picture parameter sets shall have entropy_coding_mode_flag equal to 0.

— The level constraints specified for the CAVLC 4:4:4 Intra profile in clause A.3 shall be fulfilled.

Conformance of a bitstream to the CAVLC 4:4:4 Intra profile is indicated by profile_idc being equal to 44. Decoders
conforming to the CAVLC 4:4:4 Intra profile at a specific level shall be capable of decoding all bitstreams in which all of
the following conditions are true:

— profile_idc is equal to 44,
— level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in clause 8.7 is not required for decoder conformance to the
CAVLC 4:4:4 Intra profile.

NOTE — The deblocking filter process specified in clause 8.7 or some similar post-processing filter should be performed, although
this is not a requirement for decoder conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. The syntax elements sent
by an encoder for control of the deblocking filter process specified in clause 8.7 are considered only as advisory information for
decoders conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. However, the application of the deblocking filter
process specified in clause 8.7 is required for decoder conformance to the High 4:4:4 Predictive profile when decoding bitstreams
that conform to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles.

A.3 Levels

The following is specified for expressing the constraints in this annex.
— Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.
— Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

Rec. ITU-T H.264 (08/2021) 291

Let the variable fR be derived as follows:

— If the level number is equal to 6.0, 6.1, or 6.2, fR is set equal to 1 + 300.

— Otherwise, if picture n is a frame, fR is set equal to 1 + 172.

— Otherwise (picture n is a field), fR is set equal to 1 + (172 * 2).

A3l

Level limits common to the Baseline, Constrained Baseline, Main, and Extended profiles

Bitstreams conforming to the Baseline, Constrained Baseline, Main, or Extended profiles at a specified level shall obey
the following constraints:

a)

b)

c)

d)

f)

9)
h)

)

k)

292

The nominal removal time of access unit n with n > 0 from the CPB as specified in clause C.1.2, satisfies the
constraint that tn(n) —t(n—21) is greater than or equal to Max(PicSizelnMbs + MaxMBPS, fR), where
MaxMBPS is the value specified in Table A-1 that applies to picture n — 1 and PicSizelnMbs is the number of
macroblocks in picture n — 1.

The difference between consecutive output times of pictures from the DPB as specified in clause C.2.2, satisfies
the constraint that Atogpn(N) >= Max(PicSizeInMbs + MaxMBPS, fR), where MaxMBPS is the value specified
in Table A-1 for picture n and PicSizelnMbs is the number of macroblocks of picture n, provided that picture n is
a picture that is output and is not the last picture of the bitstream that is output.

The sum of the NumBytesInNALunit variables for access unit 0 is less than or equal to
384 *(Max(PicSizelnMbs, fR * MaxMBPS) + MaxMBPS * (t:(0) —t;n(0))) + MinCR, where MaxMBPS
and MInCR are the values specified in Table A-1 that apply to picture 0 and PicSizelnMbs is the number of
macroblocks in picture 0.

The sum of the NumBytesInNALunit variables for access unit n with n > 0 is less than or equal to
384 * MaxMBPS * (t(n) —t,(n—1)) + MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture n.

PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFsS is specified in Table A-1
PicWidthInMbs <= Sqrt(MaxFS * 8)
FrameHeightInMbs <= Sqrt(MaxFS * 8)

max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(MaxDpbMbs / (PicWidthinMbs * FrameHeightInMbs), 16) and MaxDpbMbs is given in Table A-1.

For the VCL HRD parameters, BitRate[SchedSelldx] <= 1000 * MaxBR and CpbSize[SchedSelldx] <= 1000
* MaxCPB for at least one value of SchedSelldx, where BitRate[SchedSelldx] and CpbSize[SchedSelldx] are
given as follows:

- If vcl_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelldx] and CpbSize[SchedSelldx] are
given by Equations E-71 and E-72, respectively, using the syntax elements of the hrd_parameters() syntax
structure that immediately follows vcl_hrd_parameters_present_flag.

— Otherwise (vcl_hrd_parameters_present flag is equal to 0), BitRate[SchedSelldx] and
CpbSize[SchedSelldx] are inferred as specified in clause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of 1000 bits/s and 1000 bits, respectively. The bitstream
shall satisfy these conditions for at least one value of SchedSelldx in the range 0 to cpb_cnt_minusl, inclusive.

For the NAL HRD parameters, BitRate[SchedSelldx] <= 1200 * MaxBR and CpbSize[SchedSelldx] <= 1200
* MaxCPB for at least one value of SchedSelldx, where BitRate[SchedSelldx] and CpbSize[SchedSelldx] are
given as follows:

— If nal_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelldx] and CpbSize[SchedSelldx] are
given by Equations E-71 and E-72, respectively, using the syntax elements of the hrd_parameters() syntax
structure that immediately follows nal_hrd_parameters_present_flag.

— Otherwise (nal_hrd_parameters_present flag is equal to 0), BitRate[SchedSelldx] and
CpbSize[SchedSelldx] are inferred as specified in clause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of 1200 bits/s and 1200 bits, respectively. The bitstream
shall satisfy these conditions for at least one value of SchedSelldx in the range 0 to cpb_cnt_minusl.

The vertical motion vector component range for luma motion vectors does not exceed the range from —MaxVmvR
to (MaxVmvR — 0.25) in units of luma frame samples, where MaxVmvR is specified in Table A-1

Rec. ITU-T H.264 (08/2021)

NOTE 1 — When chroma_format_idc is equal to 1 and the current macroblock is a field macroblock, the motion vector
component range for chroma motion vectors may exceed the range from —MaxVmvR to (MaxVmvR —0.25) in units of
luma frame samples, due to the method of deriving chroma motion vectors as specified in clause 8.4.1.4.

) The horizontal motion vector component range for luma motion vectors does not exceed the following range:

- If the level number is less than 6.0, the specified range is from —2048 to 2047.75, inclusive, in units of luma
samples.

- Otherwise, the specified range is from —8192 to 8191.75, inclusive, in units of luma samples.

m) Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks
(mbA, mbB) of a coded video sequence for which any of the following conditions are true:

— mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

— arbitrary slice order is not allowed, mbA is the last macroblock (in decoding order) of a slice, and mbB is
the first macroblock (in decoding order) of the next slice in decoding order,

NOTE 2 — The macroblocks mbA and mbB can belong to different pictures.

— arbitrary slice order is allowed, mbA is the last macroblock (in decoding order) of a slice of a particular
picture, and mbB is the first macroblock (in decoding order) of any other slice of the same picture,

- arbitrary slice order is allowed, mbA is the last macroblock (in decoding order) of a slice of a particular
picture, and mbB is the first macroblock (in decoding order) of any slice of the next picture in decoding
order.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors
(given by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for
macroblock mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The
number of motion vectors for each macroblock is the value of the variable MvCnt after the completion of the intra
or inter prediction process for the macroblock.

NOTE 3 — The constraint specifies that the total number of motion vectors for two consecutive macroblocks in

decoding order must not exceed MaxMvsPer2Mb. When arbitrary slice order is allowed, it is specified that this
constraint must also be obeyed when slices of a picture are reordered, e.g., during transmission.

n) The number of bits of macroblock layer() data for any macroblock is not greater than 3200. Depending on
entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows:

- If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by the
number of bits in the macroblock_layer() syntax structure for a macroblock.

— Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for a
macroblock is given by the number of times read_bits(1) is called in clauses 9.3.3.2.2 and 9.3.3.2.3 when
parsing the macroblock_layer() associated with the macroblock.

Table A-1 specifies the limits for each level. A definition of all levels identified in the "Level number" column of Table A-1
is specified for the Baseline, Constrained Baseline, Main, and Extended profiles. Each entry in Table A-1 indicates, for the
level corresponding to the row of the table, the absence or value of a limit that is imposed by the variable corresponding
to the column of the table, as follows:

— If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

— Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement
of bitstream conformance to the profile at the specified level.

For purposes of comparison of level capabilities, a level shall be considered to be a lower (higher) level than some other
level if the level appears nearer to the top (bottom) row of Table A-1 than the other level.

In bitstreams conforming to the Baseline, Constrained Baseline, Main, or Extended profiles, the conformance of the
bitstream to a specified level is indicated by the syntax elements level _idc and constraint_set3 flag as follows:

— Iflevel_idc is equal to 11 and constraint_set3_flag is equal to 1, the indicated level is level 1b.

— Otherwise (level_idc is not equal to 11 or constraint_set3_flag is not equal to 1), level_idc is equal to a value of ten
times the level number (of the indicated level) specified in Table A-1.

Rec. ITU-T H.264 (08/2021) 293

Table A-1 — Level limits

Level Max Max Max decoded Max Max Vertical MV Min Max number of
number | macroblock |frame size|picture buffer video CPB size component limit | compression | motion vectors
processing rate| MaxFS size bit rate MaxBR MaxCPB MaxVmvR ratio MinCR per two
MaxMBPS (MBs) | MaxDpbMbs (1000 bits/s, (1000 bits, (luma frame consecutive MBs
(MB/s) (MBs) 1200 bits/s, 1200 bits, samples) MaxMvsPer2Mb
cpbBrVclFactor | cpbBrVclFactor
bits/s, or bits, or
cpbBrNalFactor | cpbBrNalFactor
bits/s) bits)

1 1485 99 396 64 175 64 2 -
1b 1485 99 396 128 350 64 2 -
1.1 3000 396 900 192 500 128 2 -
1.2 6 000 396 2376 384 1000 128 2 -
13 11 880 396 2376 768 2000 128 2 -
2 11 880 396 2376 2000 2000 128 2 -
2.1 19 800 792 4752 4000 4 000 256 2 -
2.2 20 250 1620 8100 4000 4 000 256 2 -
3 40 500 1620 8100 10 000 10 000 256 2 32
31 108 000 3600 18 000 14 000 14 000 512 4 16
3.2 216 000 5120 20 480 20000 20 000 512 4 16
4 245 760 8192 32768 20 000 25 000 512 4 16
4.1 245 760 8192 32768 50 000 62 500 512 2 16
4.2 522 240 8704 34816 50 000 62 500 512 2 16
5 589 824 22 080 110 400 135 000 135 000 512 2 16
5.1 983 040 36 864 184 320 240 000 240 000 512 2 16
5.2 2073 600 36 864 184 320 240 000 240 000 512 2 16
6 4177 920 139 264 696 320 240 000 240 000 8192 2 16
6.1 8 355 840 139 264 696 320 480 000 480 000 8192 2 16
6.2 16 711 680 139 264 696 320 800 000 800 000 8192 2 16

Levels with non-integer level numbers in Table A-1 are referred to as "intermediate levels".
NOTE 4 — All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative clause A.3.4 shows the effect of these limits on frame rates for several example picture formats.

A.3.2 Level limits common to the High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profiles

Bitstreams conforming to the High, Progressive High, Constrained High, High 10, Progressive High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles at a specified level
shall obey the following constraints:

a) The nominal removal time of access unit n (with n > 0) from the CPB as specified in clause C.1.2, satisfies the
constraint that tn(n) —t(n—21) is greater than or equal to Max(PicSizelInMbs + MaxMBPS, fR), where
MaxMBPS is the value specified in Table A-1 that applies to picture n — 1, and PicSizelnMbs is the number of
macroblocks in picture n — 1.

b) The difference between consecutive output times of pictures from the DPB as specified in clause C.2.2, satisfies
the constraint that Ato gen(N) >= Max(PicSizelnMbs + MaxMBPS, R), where MaxMBPS is the value specified
in Table A-1 for picture n, and PicSizelnMbs is the number of macroblocks of picture n, provided that picture n
is a picture that is output and is not the last picture of the bitstream that is output.

c) PicWidthinMbs * FrameHeightinMbs <= MaxFS, where MaxFS is specified in Table A-1

294 Rec. ITU-T H.264 (08/2021)

d)
e)
f)

9)

h)

)

PicWidthInMbs <= Sqrt(MaxFS * 8)
FrameHeightInMbs <= Sqrt(MaxFS * 8)

max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(MaxDpbMbs / (PicWidthInMbs * FrameHeightinMbs), 16) and MaxDpbMbs is specified in Table A-1.

The vertical motion vector component range for luma motion vectors does not exceed the range from —MaxVmvR
to (MaxVmvR — 0.25) in units of luma frame samples, where MaxVmvR is specified in Table A-1.

The horizontal motion vector component range for luma motion vectors does not exceed the following range:

- If the level number is less than 6.0, the specified range is from —2048 to 2047.75, inclusive, in units of luma
samples.

— Otherwise, the specified range is from —8192 to 8191.75, inclusive, in units of luma samples.

Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks
(mbA, mbB) of a coded video sequence for which any of the following conditions are true:

— mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

— separate_colour_plane_flag is equal to 0, mbA is the last macroblock (in decoding order) of a slice, and
mbB is the first macroblock (in decoding order) of the next slice in decoding order,

— separate_colour_plane_flag is equal to 1, mbA is the last macroblock (in decoding order) of a slice with a
particular value of colour_plane_id, and mbB is the first macroblock (in decoding order) of the next slice
with the same value of colour_plane_id in decoding order.

NOTE 1 - In the two above conditions, the macroblocks mbA and mbB can belong to different pictures.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors
(given by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for
macroblock mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The
number of motion vectors for each macroblock is the value of the variable MvCnt after the completion of the intra
or inter prediction process for the macroblock.
NOTE 2 — When separate_colour_plane_flag is equal to 0, the constraint specifies that the total number of motion
vectors for two consecutive macroblocks in decoding order must not exceed MaxMvsPer2Mb. When
separate_colour_plane_flag is equal to 1, the constraint specifies that the total number of motion vectors for two
consecutive macroblocks (in decoding order) with the same value of colour_plane_id must not exceed
MaxMvsPer2Mb. For macroblocks that are consecutive in decoding order but are associated with a different value
of colour_plane_id, no constraint for the total number of motion vectors is specified.

The number of bits of macroblock_layer() data for any macroblock is not greater than 128 + RawMbBits.
Depending on entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows:

— If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by the
number of bits in the macroblock_layer() syntax structure for a macroblock.

— Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for a
macroblock is given by the number of times read_bits(1) is called in clauses 9.3.3.2.2 and 9.3.3.2.3 when
parsing the macroblock_layer() associated with the macroblock.

Table A-1 specifies the limits for each level. A definition of all levels identified in the "Level number" column of Table A-1
is specified for the High, Progressive High, Constrained High, High 10, Progressive High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles. Each entry in
Table A-1 indicates, for the level corresponding to the row of the table, the absence or value of a limit that is imposed by
the variable corresponding to the column of the table, as follows:

If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement
of bitstream conformance to the profile at the specified level.

The use of the MinCR parameter column of Table A-1 for the High, High 10, High 4:2:2, High 4:4:4 Predictive,
High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles is specified in clause A.3.3.

Rec. ITU-T H.264 (08/2021) 295

In bitstreams conforming to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, the conformance of the bitstream to a specified level is indicated by the
syntax element level_idc as follows:

— Iflevel_idc is equal to 9, the indicated level is level 1b.

— Otherwise (level_idc is not equal to 9), level idc is equal to a value of ten times the level number (of the indicated
level) specified in Table A-1.

A3.3

a)

b)

<)

d)

f)

9)

296

Profile-specific level limits

In bitstreams conforming to the Main, High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra
profiles, the removal time of access unit 0 shall satisfy the constraint that the number of slices in picture O is less
than or equal to (Max(PicSizelnMbs, fR * MaxMBPS) + MaxMBPS * (t(0) —t.n(0))) + SliceRate, where
MaxMBPS and SliceRate are the values specified in Tables A-1 and A-4, respectively, that apply to picture 0 and
PicSizelnMbs is the number of macroblocks in picture 0.

In bitstreams conforming to the Main, High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra
profiles, the difference between consecutive removal times of access units n and n — 1 with n > 0 shall satisfy the
constraint that the number of slices in picture n is less than or equal
to MaxMBPS * (t(n) —t{(n—1)) + SliceRate, where MaxMBPS and SliceRate are the values specified in
Tables A-1 and A-4, respectively, that apply to picture n.

In bitstreams conforming to the Main, High, Progressive High, High 10, Progressive High 10, High 4:2:2,
High 4:4:4 Predictive profiles, sequence parameter sets shall have direct_8x8_inference_flag equal to 1 for the
levels specified in Table A-4.
NOTE 1 — direct_8x8_inference_flag is not relevant to the Baseline, Constrained Baseline, Constrained High,
High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles as these profiles do not allow B slice
types, and direct_8x8_inference_flag is equal to 1 for all levels of the Extended profile.

In bitstreams conforming to the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, or Extended profiles, sequence parameter sets shall have
frame_mbs_only_flag equal to 1 for the levels specified in Table A-4 for the Main, High, High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles and in
Table A-5 for the Extended profile.

NOTE 2 — frame_mbs_only_flag is equal to 1 for all levels of the Baseline, Constrained Baseline, Progressive High,

Constrained High, and Progressive High 10 profiles (specified in clauses A.2.1, A.2.1.1, A2.4.1,A2.42,and A.2.5.1,
respectively).

In bitstreams conforming to the Main, High, Progressive High, High 10, Progressive High 10, High 4:2:2,
High 4:4:4 Predictive, or Extended profiles, the value of sub_mb_type[mbPartldx] with mbPartldx = 0..3 in B
macroblocks with mb_type equal to B_8x8 shall not be equal to B_Bi_8x4, B_Bi_4x8, or B_Bi_4x4 for the levels
in which MinLumaBiPredSize is shown as 8x8 in Table A-4 for the Main, High, Progressive High, High 10,
Progressive High 10, High 4:2:2, High 4:4:4 Predictive profiles and in Table A-5 for the Extended profile.

In bitstreams conforming to the Baseline, Constrained Baseline, or Extended profiles, (XINtmax — XINtmin + 6) *
(yIntmax — yIntmin + 6) <= MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8, P_8x8ref0
or B_8x8 for all invocations of the process specified in clause 8.4.2.2.1 used to generate the predicted luma sample
array for a single reference picture list (reference picture list O or reference picture list 1) for each 8x8 sub-
macroblock with the macroblock partition index mbPartldx, where
NumSubMbPart(sub_mb_type[mbPartldx]) > 1, where MaxSubMbRectSize is specified in Table A-3 for the
Baseline and Constrained Baseline profiles and in Table A-5 for the Extended profile and

— XIntmi is the minimum value of xInt_ among all luma sample predictions for the sub-macroblock
— XIntmax is the maximum value of xInt. among all luma sample predictions for the sub-macroblock
— yIntmin is the minimum value of yInt. among all luma sample predictions for the sub-macroblock
— yIntmax is the maximum value of yInt_ among all luma sample predictions for the sub-macroblock

In bitstreams conforming to the High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra
profiles, for the VCL HRD parameters, BitRate[SchedSelldx] <= cpbBrVclFactor * MaxBR and
CpbSize[SchedSelldx] <= cpbBrVclFactor * MaxCPB for at least one value of SchedSelldx, where
cpbBrVclFactor is specified in Table A-2 and BitRate[SchedSelldx] and CpbSize[SchedSelldx] are given as
follows:

Rec. ITU-T H.264 (08/2021)

h)

)

k)

— If vcl_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelldx] and CpbSize[SchedSelldx] are
given by Equations E-71 and E-72, respectively, using the syntax elements of the hrd_parameters() syntax
structure that immediately follows vcl_hrd_parameters_present_flag.

— Otherwise (vcl_hrd parameters present flag is equal to 0), BitRate[SchedSelldx] and
CpbSize[SchedSelldx] are inferred as specified in clause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrVclFactor bits/s and cpbBr\clFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelldx in the range 0 to
cpb_cnt_minusl, inclusive.

In bitstreams conforming to the High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra
profiles, for the NAL HRD parameters, BitRate[SchedSelldx] <=cpbBrNalFactor * MaxBR and
CpbSize[SchedSelldx] <= cpbBrNalFactor * MaxCPB for at least one value of SchedSelldx, where
cpbBrNalFactor is specified in Table A-2 and BitRate[SchedSelldx] and CpbSize[SchedSelldx] are given as
follows:

— If nal_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelldx] and CpbSize[SchedSelldx] are
given by Equations E-71 and E-72, respectively, using the syntax elements of the hrd_parameters() syntax
structure that immediately follows nal_hrd_parameters_present_flag.

— Otherwise (nal_hrd_parameters_present flag is equal to 0), BitRate[SchedSelldx] and
CpbSize[SchedSelldx] are inferred as specified in clause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrNalFactor bits/s and cpbBrNalFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelldx in the range 0 to
cpb_cnt_minusl, inclusive.

In bitstreams conforming to the High, Progressive High, or Constrained High profiles, the sum of the
NumBytesInNALunit variables for access unit 0 is less than or equal to
384 * (Max(PicSizelnMbs, fR * MaxMBPS) + MaxMBPS * (t,(0) —t;n(0))) + MIinCR, where MaxMBPS
and MInCR are the values specified in Table A-1 that apply to picture 0 and PicSizelnMbs is the number of
macroblocks in picture 0.
NOTE 3 — Such a limit involving MInCR is not imposed for bitstream conformance to the High 10,
Progressive High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profiles.

In bitstreams conforming to the High, Progressive High, or Constrained High profiles, the sum of the
NumBytesInNALunit variables for access unitn with n > 0 is less than or equal to
384 * MaxMBPS * (t(n) —t,(n—1)) + MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture n.
NOTE 4 - Such a limit involving MIinCR is not imposed for bitstream conformance to the High 10,
Progressive High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profiles.

In bitstreams conforming to the High 10, Progressive High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, when the level number is less than 6.0 and
PicSizelnMbs is greater than 1620, the number of macroblocks in any coded slice shall not exceed MaxFS / 4,
where MaxFsS is specified in Table A-1.

Table A-2 — Specification of cpbBrVclFactor
and cpbBrNalFactor

Profile cpbBrVclFactor|cpbBrNalFactor

High
Progressive High 1250 1500
Constrained High

High 10
Progressive High 10 3000 3600
High 10 Intra

High 4:2:2

High 4:2:2 Intra 4000 4800

High 4:4:4 Predictive
High 4:4:4 Intra 4 000 4800
CAVLC 4:4:4 Intra

Rec. ITU-T H.264 (08/2021) 297

A.3.3.1 Level limits of the Baseline and Constrained Baseline profile

Table A-3 specifies limits for each level that are specific to bitstreams conforming to the Baseline or Constrained Baseline
profiles. Each entry in Table A-3 indicates, for the level corresponding to the row of the table, the absence or value of a
limit that is imposed by the variable corresponding to the column of the table, as follows:

— If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

— Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement
of bitstream conformance to the profile at the specified level.

Table A-3 — Baseline and Constrained
Baseline profile level limits

Level number | MaxSubMbRectSize
1 576
1b 576
11 576
1.2 576
13 576
2 576
2.1 576
2.2 576
3 576
3.1 -
3.2 -
4 -
4.1 -
4.2 -
5 -
5.1 -
5.2 -
6.0 -
6.1 -
6.2 -

A.3.3.2 Level limits of the Main, High, Progressive High, Constrained High, High 10, Progressive High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profile

Table A-4 specifies limits for each level that are specific to bitstreams conforming to the Main, High, Progressive High,
Constrained High, High 10, Progressive High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles. Each entry in Table A-4 indicates, for the level corresponding to the row
of the table, the absence or value of a limit that is imposed by the variable corresponding to the column of the table, as
follows:

— If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

— Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement
of bitstream conformance to the profile at the specified level.

298 Rec. ITU-T H.264 (08/2021)

NOTE - The constraints for MinLumaBiPredSize and direct_8x8_inference_flag are not relevant to the
Constrained High, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles, as these profiles
do not support B slices.

Table A-4 — Main, High, Progressive High, Constrained High, High 10, Progressive High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level

limits
Level number | SliceRate MinLumaBiPredSize direct 8x8 inference flag frame_mbs_only flag
1 - - - 1
1b - - - 1
1.1 - - ; 1
1.2 - - - 1
1.3 - - - 1
2 - - - 1
2.1 - - - -
2.2 - - - -
3 22 - 1 -
31 60 8x8 1 -
3.2 60 8x8 1 -
4 60 8x8 1 -
4.1 24 8x8 1 -
4.2 24 8x8 1 1
5 24 8x8 1 1
51 24 8x8 1 1
5.2 24 8x8 1 1
6 24 8x8 1 1
6.1 24 8x8 1 1
6.2 24 8x8 1 1

A.3.3.3 Level limits of the Extended profile

Table A-5 specifies limits for each level that are specific to bitstreams conforming to the Extended profile. Each entry in
Table A-5 indicates, for the level corresponding to the row of the table, the absence or value of a limit that is imposed by
the variable corresponding to the column of the table, as follows:

— If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

— Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement
of bitstream conformance to the profile at the specified level.

Rec. ITU-T H.264 (08/2021) 299

300

Table A-5 — Extended profile level limits

Level number | MaxSubMbRectSize | MinLumaBiPredSize | frame_mbs _only flag
1 576 - 1
1b 576 -
1.1 576 - 1
1.2 576 - 1
1.3 576 - 1
2 576 - 1
2.1 576 - -
2.2 576 - -
3 576 - -
3.1 - 8x8 -
3.2 - 8x8 -
4 - 8x8 -
41 - 8x8 -
4.2 - 8x8 1
5 - 8x8 1
5.1 - 8x8 1
5.2 - 8x8 1
6 - 8x8 1
6.1 - 8x8 1
6.2 - 8x8 1

Rec. ITU-T H.264 (08/2021)

A3.4

Effect of level limits on frame rate (informative)

This clause does not form an integral part of this Recommendation | International Standard.

Table A-6 — Maximum frame rates (frames per second) for some example frame sizes

Level: 1 1b 1.1 1.2 1.3 2 2.1
Max frame size (macroblocks): 99 99 396 396 396 396 792
Max macroblocks/second: 1485 1485 3000 6 000 11880 11 880 19 800
Max frame size (samples): 25344 25344 101 376 101 376 101 376 101 376 202 752
Max samples/second: 380160 380160| 768000| 1536000| 3041280| 3041280 5 068 800
Luma| Luma MBs Luma
Format Width| Height| Total| Samples
SQCIF 128 96 48 12 288 30.9 30.9 62.5 125.0 172.0 172.0 172.0
QCIF 176 144 99 25344 15.0 15.0 30.3 60.6 120.0 120.0 172.0
QVGA 320 240 300 76 800 - - 10.0 20.0 39.6 39.6 66.0
525 SIF 352 240 330 84 480 - - 9.1 18.2 36.0 36.0 60.0
CIF 352 288 396| 101376 - - 7.6 15.2 30.0 30.0 50.0
525 HHR 352 480 660| 168960 - - - - - - 30.0
625 HHR 352 576 792| 202752 - - - - - - 25.0
VGA 640 480 1200| 307200 - - - - - - -
525 4SIF 704 480 1320| 337920 - - - - - - -
525 SD 720 480 1350| 345600 - - - - - - -
4CIF 704 576 1584 405 504 - - - - - - -
625 SD 720 576 1620 414720 - - - - - - -
SVGA 800 600 1900 486 400 - - - - - - -
XGA 1024 768| 3072 786432 - - - - - - -
720p HD 1280 720| 3600 921600 - - - - - - -
4VGA 1280 960| 4800| 1228800 - - - - - - -
SXGA 1280 1024] 5120| 1310720 - - - - - - -
525 16SIF 1408 960| 5280| 1351680 - - - - - - -
16CIF 1408 1152| 6336 1622016 - - - - - - -
4SVGA 1600 1200 7500] 1920000 - - - - - - -
1080 HD 1920] 1088| 8160 2088960 - - - - - - -
2Kx1K 2048 1024 8192| 2097152 - - - - - - -
2Kx1080 2048 1088| 8704| 2228224 - - - - - - -
4AXGA 2048 1536| 12288| 3145728 - - - - - - -
16VGA 2560 1920| 19200 4915200 - - - - - - -
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 - - - - - - -
3672x1536 (2.39:1) 3680 1536| 22080 5652480 - - - - - - -
3840x2160 3840 2160 31035| 7948800 - - - - - - -
4Kx2K 4096 2048| 32768| 8388608 - - - - - - -
4096x2160 4096 2160| 34560| 8847360 - - - - - - -
4096x2304 (16:9) 4096 2304| 36864| 9437184 - - - - - - -
7680x4320 7680 4320| 129 60033 177 600 - - - - - - -
8192x4096 8192 4096| 13107233 554 432 - - - - - - -
8192x4320 8192 4320 13824035 389 440 - - - - - - -
Rec. ITU-T H.264 (08/2021) 301

Table A-6 (continued) — Maximum frame rates (frames per second) for some example frame sizes

Level: 2.2 3 3.1 3.2 4 4.1 4.2
Max frame size (macroblocks): 1620 1620 3600 5120 8192 8192 8704
Max macroblocks/second: 20 250 40500| 108000 216000| 245760| 245760 522 240
Max frame size (samples): 414720 414720 921600 1310720| 2097 152| 2097 152 2228224
Max samples/second: 5184 000 | 10 368 000 | 27 648 000 | 55 296 000 | 62 914 560 | 62 914 560 | 133 693 440
Luma| Luma MBs Luma

Format Width| Height| Total| Samples

SQCIF 128 96 48 12 288 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 300 76 800 675 135.0 172.0 172.0 172.0 172.0 172.0
525 SIF 352 240 330 84 480 61.4 122.7 172.0 172.0 172.0 172.0 172.0
CIF 352 288 396| 101376 51.1 102.3 172.0 172.0 172.0 172.0 172.0
525 HHR 352 480 660 168 960 30.7 614 163.6 172.0 172.0 172.0 172.0
625 HHR 352 576 792 202 752 25.6 51.1 136.4 172.0 172.0 172.0 172.0
VGA 640 480 1200 307 200 16.9 33.8 90.0 172.0 172.0 172.0 172.0
525 4SIF 704 480 1320 337920 153 30.7 81.8 163.6 172.0 172.0 172.0
525 SD 720 480 1350 345 600 15.0 30.0 80.0 160.0 172.0 172.0 172.0
4CIF 704 576 1584 405 504 12.8 25.6 68.2 136.4 155.2 155.2 172.0
625 SD 720 576 1620 414 720 125 25.0 66.7 133.3 151.7 151.7 172.0
SVGA 800 600 1900| 486 400 - - 56.8 113.7 129.3 129.3 172.0
XGA 1024 768 3072| 786432 - - 35.2 70.3 80.0 80.0 170.0
720p HD 1280 720 3600| 921600 - - 30.0 60.0 68.3 68.3 145.1
4VGA 1280 960| 4800| 1228800 - - - 45.0 51.2 51.2 108.8
SXGA 1280 1024 5120| 1310720 - - - 42.2 48.0 48.0 102.0
525 16SIF 1408 960 5280| 1351680 - - - - 46.5 46.5 98.9
16CIF 1408 1152 6336| 1622016 - - - - 38.8 38.8 82.4
4SVGA 1600 1200 7500| 1920000 - - - - 32.8 32.8 69.6
1080 HD 1920 1088| 8160| 2088960 - - - - 30.1 30.1 64.0
2Kx1K 2048 1024| 8192| 2097152 - - - - 30.0 30.0 63.8
2Kx1080 2048 1088| 8704| 2228224 - - - - - - 60.0
AXGA 2048 1536| 12288| 3145728 - - - - - - -
16VGA 2560 1920| 19200| 4915200 - - - - - - -
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 - - - - - - -
3672x1536 (2.39:1) 3680 1536| 22080| 5652480 - - - - - - -
3840x2160 3840 2160| 31035| 7948800 - - - - - - -
4Kx2K 4096 2048| 32768 8388608 - - - - - - -
4096x2160 4096 2160| 34560| 8847360 - - - - - - -
4096x2304 (16:9) 4096 2304| 36864| 9437184 - - - - - - -
7680x4320 7680 4320 129 60033 177 600 - - - - - - -
8192x4096 8192 4096 | 13107233 554 432 - - - - - - -
8192x4320 8192 4320| 138 240 35 389 440 - - - - - - -

302 Rec. ITU-T H.264 (08/2021)

Table A-6 (concluded) — Maximum frame rates (frames per second) for some example frame sizes

Level: 5 5.1 5.2 6 6.1 6.2
Max frame size (macroblocks): 22 080 36 864 36 864 139 264 139264 139 264
Max macroblocks/second: 589 824 983 040 2073 600 4177 920 8 355 840 16 711 680
Max frame size (samples): 5 652 480 9437 184 9437 184 35 651 584 35651 584 35 651 584
Max samples/second: 150994944 | 251658240 530841600 1069547520| 2139095040| 4278190080
Luma| Luma MBs Luma

Format Width| Height| Total| Samples

SQCIF 128 96 48 12 288 172.0 172.0 172.0 300.0 300.0 300.0
QCIF 176 144 99 25344 172.0 172.0 172.0 300.0 300.0 300.0
QVGA 320 240 300 76 800 172.0 172.0 172.0 300.0 300.0 300.0
525 SIF 352 240 330 84 480 172.0 172.0 172.0 300.0 300.0 300.0
CIF 352 288 396| 101376 172.0 172.0 172.0 300.0 300.0 300.0
525 HHR 352 480 660 168960 172.0 172.0 172.0 300.0 300.0 300.0
625 HHR 352 576 792 202 752 172.0 172.0 172.0 300.0 300.0 300.0
VGA 640 480| 1200| 307200 172.0 172.0 172.0 300.0 300.0 300.0
525 4SIF 704 480 1320 337920 172.0 172.0 172.0 300.0 300.0 300.0
525 SD 720 480| 1350| 345600 172.0 172.0 172.0 300.0 300.0 300.0
4ACIF 704 576| 1584| 405504 172.0 172.0 172.0 300.0 300.0 300.0
625 SD 720 576| 1620| 414720 172.0 172.0 172.0 300.0 300.0 300.0
SVGA 800 600| 1900| 486400 172.0 172.0 172.0 300.0 300.0 300.0
XGA 1024 768| 3072| 786432 172.0 172.0 172.0 300.0 300.0 300.0
720p HD 1280 720| 3600 921600 163.8 172.0 172.0 300.0 300.0 300.0
4VGA 1280 960| 4800| 1228800 122.9 172.0 172.0 300.0 300.0 300.0
SXGA 1280 1024 5120| 1310720 115.2 172.0 172.0 300.0 300.0 300.0
525 16SIF 1408 960 5280| 1351680 111.7 172.0 172.0 300.0 300.0 300.0
16CIF 1408 1152 6336| 1622016 93.1 155.2 172.0 300.0 300.0 300.0
4SVGA 1600 1200 7500| 1920000 78.6 131.1 172.0 300.0 300.0 300.0
1080 HD 1920 1088| 8160| 2088960 723 120.5 172.0 300.0 300.0 300.0
2Kx1K 2048 1024| 8192| 2097152 72.0 120.0 172.0 300.0 300.0 300.0
2Kx1080 2048 1088| 8704| 2228224 67.8 112.9 172.0 300.0 300.0 300.0
4XGA 2048 1536| 12288| 3145728 48.0 80.0 168.8 300.0 300.0 300.0
16VGA 2560 1920| 19200| 4915200 30.7 512 108.0 217.6 300.0 300.0
3616x1536 (2.35:1) 3616 1536| 21696| 5554176 27.2 453 95.6 192.6 300.0 300.0
3672x1536 (2.39:1) 3680 1536| 22080| 5652480 26.7 445 93.9 189.2 300.0 300.0
3840x2160 3840 2160| 31035| 7948800 - 30.3 64.0 128.9 257.9 300.0
4Kx2K 4096 2048| 32768| 8388608 - 30.0 63.3 1275 255.0 300.0
4096x2160 4096 2160| 34560| 8847360 - 284 60.0 120.9 241.8 300.0
4096x2304 (16:9) 4096 2304| 36864| 9437184 - 26.7 56.3 113.3 226.7 300.0
7680x4320 7680 4320| 129 600] 33 177 600 - - - 322 64.5 128.9
8192x4096 8192 4096| 13107233554 432 - - - 319 63.8 1275
8192x4320 8192 4320| 138 240 35 389 440 - - - 30.2 60.4 120.9

The following should be noted:

— This Recommendation | International Standard is

a variable-frame-size specification. The specific frame sizes in
Table A-6 are illustrative examples only.

As used in Table A-6, "525" refers to typical use for environments using 525 analogue scan lines (of which
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue scan
lines (of which approximately 576 lines contain the visible picture region).

XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF
aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka
625 ITU-R BT.601.

The given maximum frame rate values that have a zero to the right of the decimal point are exact. Others have been
rounded to the nearest 0.1 frames per second, i.e., the precise maximum frame rates may be higher or lower within a
margin of plus or minus 0.05 frames per second. For example, for Level 4, the maximum frame rate for 720p HD has
been rounded up to 68.3 from a value of 68.2666..., and the maximum frame rate for 1080 HD has been rounded
down to 30.1 from a value of 30.1176....

Frame rates given are correct for progressive scan modes. The frame rates are also correct for interlaced video coding
for the cases of frame height divisible by 32.

Rec. ITU-T H.264 (08/2021) 303

A3.5

Effect of level limits on maximum DPB size in units of frames (informative)

This clause does not form an integral part of this Recommendation | International Standard.

304

Table A-7 — Maximum DPB size (frames) for some example frame sizes

Level: 1 1b 1.1 1.2 1.3 2 2.1 2.2
Max frame size (macroblocks): 99 99 396 396 396 396 792 1620
Max DPB size (macroblocks): 396 396 900| 2376| 2376| 2376| 4752 8100
Format Luma Width | Luma Height | MBs Total

SQCIF 128 96 48 8 8 16 16 16 16 16 16
QCIF 176 144 99 4 4 9 16 16 16 16 16
QVGA 320 240 300 - 3 7 7 7 15 16
525 SIF 352 240 330 - - 2 7 7 7 14 16
CIF 352 288 396 - - 2 6 6 6 12 16
525 HHR 352 480 660 - - - - - - 7 12
625 HHR 352 576 792 - - - - - 6 10
VGA 640 480 1200 - - - 6
525 4SIF 704 480 1320 - - - - - - - 6
525 SD 720 480 1350 - - - - - - - 6
ACIF 704 576 1584 - - - - - - - 5
625 SD 720 576 1620 - - - - - - - 5
SVGA 800 600 1900 - - - - - - - -
XGA 1024 768 3072 - - - - - - - -
720p HD 1280 720 3600 - - - - - - -

4VGA 1280 960 4 800 - - - - - - - -
SXGA 1280 1024 5120 - - - - - - - -
525 16SIF 1408 960 5280 - - - - - - - -
16CIF 1408 1152 6 336 - - - - - - - -
4SVGA 1600 1200 7500 - - - - - - - -
1080 HD 1920 1088 8160 - - - - - - - -
2KXx1K 2048 1024 8192 - - - - - - - -
2Kx1080 2048 1088 8 704 - - - - - - - -
4XGA 2048 1536 12288 - - - - - - - -
16VGA 2560 1920 19 200 - - - - - - - -
3616x1536 (2.35:1) 3616 1536 21 696 - - - - - - - -
3672x1536 (2.39:1) 3680 1536 22 080 - - - - - - - -
3840x2160 3840 2160 31035 - - - - - - - -
4Kx2K 4096 2048 32768 - - - - - - - -
4096x2160 4096 2160 34 560 - - - - - - - -
4096x2304 (16:9) 4096 2304 36 864 - - - - - - - -
7680x4320 7680 4320 129 600 - - - - - - - -
8192x4096 8192 4096 131072 - - - - - - - -
8192x4320 8192 4320 138 240 - - - - - - - -

Rec. ITU-T H.264 (08/2021)

Table A-7 (continued) — Maximum DPB size (frames) for some example frame sizes

Level: 3 3.1 3.2 4 4.1 4.2
Max frame size (macroblocks): 1620 3600| 5120/ 8192| 8192| 8704
Max DPB size (macroblocks): 8100| 18000| 20480| 32768| 32768| 34816

MBs

Format Luma Width | Luma Height Total
SQCIF 128 96 48 16 16 16 16 16 16
QCIF 176 144 99 16 16 16 16 16 16
QVGA 320 240 300 16 16 16 16 16 16
525 SIF 352 240 330 16 16 16 16 16 16
CIF 352 288 396 16 16 16 16 16 16
525 HHR 352 480 660 12 16 16 16 16 16
625 HHR 352 576 792 10 16 16 16 16 16
VGA 640 480 1200 6 15 16 16 16 16
525 4SIF 704 480 1320 6 13 15 16 16 16
525 SD 720 480 1350 6 13 15 16 16 16
ACIF 704 576 1584 5 11 12 16 16 16
625 SD 720 576 1620 5 11 12 16 16 16
SVGA 800 600 1900 - 9 10 16 16 16
XGA 1024 768 3072 - 5 6 10 10 11
720p HD 1280 720 3600 5 5 9 9 9
4VGA 1280 960 4 800 - - 4 6 6 7
SXGA 1280 1024 5120 - - 4 6 6 6
525 16SIF 1408 960 5280 - - 6 6 6
16CIF 1408 1152 6 336 - - - 5 5 5
4SVGA 1600 1200 7500 - - - 4 4 4
1080 HD 1920 1088 8 160 - - - 4 4 4
2KXx1K 2048 1024 8192 - - - 4 4 4
2Kx1080 2048 1088 8 704 - - - - - 4
4XGA 2048 1536 12 288 - - - - - -
16VGA 2560 1920 19 200 - - - - - -
3616x1536 (2.35:1) 3616 1536 21 696 - - - - - -
3672x1536 (2.39:1) 3680 1536 22 080 - - - - - -
3840x2160 3840 2160 31035 - - - - - -
4Kx2K 4096 2048 32768 - - - - - -
4096x2160 4096 2160 34 560 - - - - - -
4096x2304 (16:9) 4096 2304 36 864 - - - - - -
7680x4320 7680 4320 129 600 - - - - - -
8192x4096 8192 4096| 131072 - - - - - -
8192x4320 8192 4320] 138240 - - - - - -

Table A-7 (concluded) — Maximum DPB size (frames) for some example frame sizes

Level: 5 5.1 5.2 6 6.1 6.2
Max frame size (macroblocks): 22080| 36864| 36864|129600| 131072 138 240
Max DPB size (macroblocks): 110400 184 320 | 184 320 696 320 | 696 320 | 696 320

Format Luma Width | Luma Height | MBs Total
SQCIF 128 96 48 16 16 16 16 16 16
QCIF 176 144 99 16 16 16 16 16 16
QVGA 320 240 300 16 16 16 16 16 16
525 SIF 352 240 330 16 16 16 16 16 16
CIF 352 288 396 16 16 16 16 16 16
525 HHR 352 480 660 16 16 16 16 16 16
625 HHR 352 576 792 16 16 16 16 16 16
VGA 640 480 1200 16 16 16 16 16 16
525 4SIF 704 480 1320 16 16 16 16 16 16
525 SD 720 480 1350 16 16 16 16 16 16
4ACIF 704 576 1584 16 16 16 16 16 16
625 SD 720 576 1620 16 16 16 16 16 16
SVGA 800 600 1900 16 16 16 16 16 16
XGA 1024 768 3072 16 16 16 16 16 16
720p HD 1280 720 3600 16 16 16 16 16 16
4VGA 1280 960 4800 16 16 16 16 16 16
SXGA 1280 1024 5120 16 16 16 16 16 16
525 16SIF 1408 960 5 280 16 16 16 16 16 16
16CIF 1408 1152 6 336 16 16 16 16 16 16
4SVGA 1600 1200 7 500 14 16 16 16 16 16
1080 HD 1920 1088 8160 13 16 16 16 16 16
2Kx1K 2048 1024 8192 13 16 16 16 16 16
2Kx1080 2048 1088 8 704 12 16 16 16 16 16
4AXGA 2048 1536 12 288 8 15 15 16 16 16
16VGA 2560 1920 19 200 5 9 9 16 16 16
3616x1536 (2.35:1) 3616 1536 21696 5 8 8 16 16 16
3672x1536 (2.39:1) 3680 1536 22 080 5 8 8 16 16 16
3840x2160 3840 2160 31035 - 5 5 16 16 16
4Kx2K 4096 2048 32768 - 5 5 16 16 16
4096x2160 4096 2160 34 560 5 5 16 16 16
4096x2304 (16:9) 4096 2304 36 864 - 5 5 16 16 16
7680x4320 7680 4320 129600 - - - 5 5 5
8192x4096 8192 4096 | 131072 - - - 5 5 5
8192x4320 8192 4320| 138240 - - 5 5 5
Rec. ITU-T H.264 (08/2021)

305

The following should be noted:

306

As used in Table A-7, "525" refers to typical use for environments using 525 analogue scan lines (of which
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue scan
lines (of which approximately 576 lines contain the visible picture region).

XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF
aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka
625 ITU-R BT.601.

Rec. ITU-T H.264 (08/2021)

Annex B

Byte stream format

(This annex forms an integral part of this Recommendation | International Standard.)

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or
all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need
to be identifiable from patterns in the data, such as Rec. ITU-T H.222.0 | ISO/IEC 13818-1 systems or Rec. ITU-T H.320
systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first
byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit
syntax structure contains one start code prefix followed by one nal_unit(NumBytesInNALunit) syntax structure. It may
(and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or
more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may also
contain one or more additional leading_zero_8bits syntax elements.

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Byte stream NAL unit syntax

byte_stream_nal_unit(NumBytesInNALunit) { C Descriptor

while(next_bits(24) !'= 0x000001 &&
next_bits(32) !=0x00000001)

leading_zero_8bits /* equal to 0x00 */ f(8)
if(next_bits(24) '= 0x000001)

zero_byte /* equal to 0x00 */ f(8)
start_code_prefix_one_3bytes /* equal to 0x000001 */ f(24)

nal_unit(NumBytesInNALunit)
while(more_data_in_byte stream() &&
next_bits(24) = 0x000001 &&
next_bits(32) '=0x00000001)
trailing_zero_8bits /* equal to 0x00 */ f(8)

}

B.1.2 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the
byte stream NAL units (see clause 7.4.1.2). The content of each byte stream NAL unit is associated with the same access
unit as the NAL unit contained in the byte stream NAL unit (see clause 7.4.1.2.3).

leading_zero_8bits is a byte equal to 0x00.

NOTE — The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as
shown in the syntax diagram of clause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the four-
byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one_3bytes) will be
considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit.

zero_byte is a single byte equal to 0x00.
When any of the following conditions are true, the zero_byte syntax element shall be present:

— the nal_unit_type within the nal_unit() is equal to 7 (sequence parameter set) or 8 (picture parameter set),

— the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as specified
in clause 7.4.1.2.3.

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a
start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

Rec. ITU-T H.264 (08/2021) 307

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax
structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initializes its current position in the byte stream to the beginning of
the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current
position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next four
bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax structure
in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) and the last
NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte
stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte stream
is set equal to the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and
discarded and the current position in the byte stream is set equal to the position of the byte following this three-byte
sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte
stream up to and including the last byte that precedes the location of any of the following:

— Asubsequent byte-aligned three-byte sequence equal to 0x000000,
— Asubsequent byte-aligned three-byte sequence equal to 0x000001,
— The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is advanced
by NumBytesInNALunit bytes. This sequence of bytes is nal_unit(NumBytesInNALunit) and is decoded using
the NAL unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified
means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the
next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts and
discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward one byte
at a time, until the current position in the byte stream is such that the next bytes in the byte stream form the four-
byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by unspecified
means).

B.3 Decoder byte-alignment recovery (informative)
This clause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the bit-
oriented byte alignment detection procedure described in this clause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the positions
of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder's byte stream, the
decoder may examine the incoming bitstream for the binary pattern ‘00000000 00000000 00000000 00000001' (31
consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an
aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned with the encoder
and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte sequences
0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be
discarded as specified in clause 7.4.1.

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden_zero_bit or one of the three-byte
or four-byte sequences that are prohibited in clause 7.4.1), the decoder may consider the detected condition as an indication
that byte alignment may have been lost and may discard all bitstream data until the detection of byte alignment at a later
position in the bitstream as described in this clause.

308 Rec. ITU-T H.264 (08/2021)

Annex C

Hypothetical reference decoder

(This annex forms an integral part of this Recommendation | International Standard.)

This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams are subject to HRD conformance checking for this Recommendation | International Standard. The
first such type of bitstream, called Type | bitstream, is a NAL unit stream containing only the VCL NAL units and filler
data NAL units for all access units in the bitstream. The second type of bitstream, called a Type Il bitstream, contains, in
addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of the following:

additional non-VCL NAL units other than filler data NAL units,

— all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form a
byte stream from the NAL unit stream (as specified in Annex B).

Figure C-1 shows the types of bitstream conformance points checked by the HRD.

Non-VCL NAL units other

VCL NAL units than filter data NAL units
Filter data NAL units

‘ A 4 A 4

Byte stream format
encapsulation
(see Annex B)

A 4 A 4 A\ 4 \ 4 A 4 ‘
Type 1 HRD Type Il HRD
Type Il HRD conformance point when conformance point when
conformance point not using using
byte stream format byte stream format

H.264(09)_FC-1

Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the
HRD, are specified in the semantics subclauses of clause 7, Annexes D and E, and clauses G.7, G.13, G.14, H.7, H.13,
H.14, 1.7, 1.13, and 1.14.

Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter sets
are signalled as follows:

When the coded video sequence conforms to one or more of the profiles specified in Annex A and the decoding
process specified in clauses 2 to 9 is applied, the HRD parameter sets are signalled through video usability information
as specified in clauses E.1 and E.2, which is part of the sequence parameter set syntax structure.

— When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding
process specified in Annex G is applied, the HRD parameter sets are signalled through the SVC video usability
information extension as specified in clauses G.14.1 and G.14.2, which is part of the subset sequence parameter set
syntax structure.

NOTE 1 - For coded video sequences that conform to both, one or more of the profiles specified in Annex A and one or more of the

profiles specified in Annex G, the signalling of the applicable HRD parameter sets is depending on whether the decoding process
specified in clauses 2 to 9 or the decoding process specified in Annex G is applied.

— When the coded video sequence conforms to one or more of the profiles specified in Annex H and the decoding
process specified in Annex H is applied, the HRD parameter sets are signalled through the MVC video usability
information extension as specified in clauses H.14.1 and H.14.2, which is part of the subset sequence parameter set
syntax structure.

Rec. ITU-T H.264 (08/2021) 309

NOTE 2 — For coded video sequences that conform to both, one or more of the profiles specified in Annex A and one or more of the
profiles specified in Annex H, the signalling of the applicable HRD parameter sets is depending on whether the decoding process
specified in clauses 2 to 9 or the decoding process specified in Annex H is applied.

— When the coded video sequence conforms to one or more of the profiles specified in Annex | and the decoding process
specified in Annex | is applied, the HRD parameter sets are signalled through the MVC video usability information
extension as specified in clause 1.14, which is part of the subset sequence parameter set syntax structure.

NOTE 3 - For coded video sequences that conform to one or more of the profiles specified in Annex A, one or more of the profiles
specified in Annex H and one or more of the profiles specified in Annex I, the signalling of the applicable HRD parameter sets is
dependent on whether the decoding process specified in clauses 2-9, the decoding process specified in Annex H, or the decoding
process specified in Annex | is applied.

All sequence parameter sets and picture parameter sets referred to in the VCL NAL units, and corresponding buffering
period and picture timing SEI messages shall be conveyed to the HRD, in a timely manner, either in the bitstream (by non-
VCL NAL units), or by other means not specified in this Recommendation | International Standard.

In Annexes C, D, and E and clauses G.12, G.13, G.14, H.12, H.13, H.14, 1.13 and 1.14 the specification for "presence" of
non-VCL NAL units is also satisfied when those NAL units (or just some of them) are conveyed to decoders (or to the
HRD) by other means not specified by this Recommendation | International Standard. For the purpose of counting bits,
only the appropriate bits that are actually present in the bitstream are counted.

NOTE 4 — As an example, synchronization of a non-VCL NAL unit, conveyed by means other than presence in the bitstream, with

the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the
non-VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.

When the content of a non-VCL NAL unit is conveyed for the application by some means other than presence within the
bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax specified in
this annex.
NOTE 5 — When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the
requirements of this clause based solely on information contained in the bitstream. When the HRD information is not present in the
bitstream, as is the case for all "stand-alone" Type | bitstreams, conformance can only be verified when the HRD data is supplied
by some other means not specified in this Recommendation | International Standard.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB), and
output cropping as shown in Figure C-2.

310 Rec. ITU-T H.264 (08/2021)

Hypothetical
stream scheduler
(HSS)

Type | or Type Il bitstream
Y

Coded picture
buffer (CPB)

Access units

Y

. |Decoding process
"] (instantaneous)

Reference Pictures
fields or frames

Y

Decoded picture
buffer (DPB)

Pictures
A

Output cropping

l Output cropped pictures
H.264(13)_FC-2

Figure C-2 — HRD buffer model

The CPB size (number of bits) is CpbSize[SchedSelldx]. The DPB size (number of frame buffers) is
Max(1, max_dec_frame_buffering). When the coded video sequence conforms to one or more of the profiles specified in
Annex H and the decoding process specified in Annex H is applied, the DPB size is specified in units of view components.
When the coded video sequence conforms to one or more of the profiles specified in Annex I and the decoding process
specified in Annex | is applied, the DPB is operated separately for texture view components and depth view components
and the terms texture DPB and depth DPB are used, respectively. The texture DPB size is specified in units of texture view
components and the depth DPB size is specified in units of depth view components.

The HRD operates as follows. Data associated with access units that flow into the CPB according to a specified arrival
schedule are delivered by the HSS. The data associated with each access unit are removed and decoded instantaneously by
the instantaneous decoding process at CPB removal times. Each decoded picture is placed in the DPB at its CPB removal
time unless it is output at its CPB removal time and is a non-reference picture. When a picture is placed in the DPB it is
removed from the DPB at the later of the DPB output time or the time that it is marked as "unused for reference".

For each picture in the bitstream, the variable OutputFlag for the decoded picture and, when applicable, the reference base
picture, is set as follows:

— If the coded video sequence containing the picture conforms to one or more of the profiles specified in Annex A and
the decoding process specified in clauses 2 to 9 is applied, OutputFlag is set equal to 1.

— Otherwise, if the coded video sequence containing the picture conforms to one or more of the profiles specified in
Annex G and the decoding process specified in Annex G is applied, the following applies:

— For areference base picture, OutputFlag is set equal to 0.

— For adecoded picture, OutputFlag is set equal to the value of the output_flag syntax element of the target layer
representation.

— Otherwise, if the coded video sequence containing the picture conforms to one or more of the profiles specified in
Annex H and the decoding process specified in Annex H is applied, the following applies:

— For the decoded view components of the target output views, OutputFlag is set equal to 1.
— For the decoded view components of other views, OutputFlag is set equal to 0.

— Otherwise (the coded video sequence containing the picture conforms to one or more of the profiles specified in
Annex | and the decoding process specified in Annex | is applied), the following applies:

Rec. ITU-T H.264 (08/2021) 311

— For the decoded texture view components and corresponding depth view components with the same VOIdx as
the target output views, OutputFlag is set equal to 1.

— For the decoded texture view components and corresponding depth view components with the same VOIdx as
other views, OutputFlag is set equal to 0.

The operation of the CPB is specified in clause C.1. The instantaneous decoder operation is specified in clauses 2 to 9 (for
coded video sequences conforming to one or more of the profiles specified in Annex A) and in Annex G (for coded video
sequences conforming to one or more of the profiles specified in Annex G) and in Annex H (for coded video sequences
conforming to one or more of the profiles specified in Annex H) and in Annex | (for coded video sequences conforming
to one or more of the profiles specified in Annex I). The operation of the DPB is specified in clause C.2. The output
cropping is specified in clause C.2.2.
NOTE 6 — Coded video sequences that conform to one or more of the profiles specified in Annex A, and at the same time, one or
more of the profiles specified in Annex G can be decoded either by the decoding process specified in clauses 2 to 9 or by the decoding
process specified in Annex G. The decoding result and the HRD operation may be dependent on which of the decoding processes is
applied.
NOTE 7 — Coded video sequences that conform to one or more of the profiles specified in Annex A, and at the same time, one or
more of the profiles specified in Annex H can be decoded either by the decoding process specified in clauses 2 to 9 or by the decoding
process specified in Annex H. The decoding result and the HRD operation may be dependent on which of the decoding processes is
applied.
NOTE 8 — Coded video sequences that conform to one or more of the profiles specified in Annex A, one or more of the profiles
specified in Annex H, and one or more of the profiles specified in Annex |, can be decoded either by the decoding process specified
in clauses 2 to 9, by the decoding process specified in Annex H or by the decoding process specified in Annex I. The decoding result
and the HRD operation may be dependent on which of the decoding processes is applied.

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and
buffer sizes is specified in clauses E.1.1,E.1.2, E.2.1,E.2.2,G.14.1,G.14.2,H.14.1,H.14.2 and |.14. The HRD is initialized
as specified by the buffering period SEI message as specified in clauses D.1.2 and D.2.1. The removal timing of access
units from the CPB and output timing from the DPB are specified in the picture timing SEI message as specified in
clauses D.1.3 and D.2.3. All timing information relating to a specific access unit shall arrive prior to the CPB removal time
of the access unit.

When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding process
specified in Annex G is applied, the following is specified:

() When an access unit contains one or more buffering period SEI messages that are included in scalable nesting
SEl messages and are associated with values of DQId in the range of ((DQIldMax >>4)<<4) to
(((DQIldMax >>4) << 4) +15), inclusive, the last of these buffering period SEI messages in decoding order
is the buffering period SEI message that initializes the HRD. Let hrdDQId be the largest value of
16 * sei_dependency _id[i] + sei_quality id[i] that is associated with the scalable nesting SEI message
containing the buffering period SEI message that initializes the HRD, let hrdDId and hrdQld be equal to
hrdDQId >> 4 and hrdDQId & 15, respectively, and let hrdT1d be the value of sei_temporal_id that is associated
with the scalable nesting SEI message containing the buffering period SEI message that initializes the HRD.

(b) The picture timing SEI messages that specify the removal timing of access units from the CPB and output timing
from the DPB are the picture timing SEI messages that are included in scalable nesting SEI messages associated
with values of sei_dependency_id[i], sei_quality id[i], and sei_temporal_id equal to hrdDId, hrdQld, and
hrdTId, respectively.

(c) The HRD parameters that are used for conformance checking are the HRD parameters included in the SVC video
usability information extension of the active SVC sequence parameter set that are associated with values of
vui_ext_dependency_id[i], vui_ext_quality id[i], and vui_ext_temporal_id[i] equal to hrdDId, hrdQId, and
hrdTld, respectively. For the specification in this annex, num_units_in_tick, time_scale, fixed_frame_rate_flag,
nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag, low_delay_hrd_flag, and
pic_struct present flag are substituted with the values of vui_ext num_units_in_tick[i],
vui_ext time_scale[i], vui_ext fixed_frame rate flag[i], wvui_ext nal_hrd_parameters_present flag[i],
vui_ext_vcl_hrd_parameters_present flag[i], vui_ext _low_delay _hrd flag[i], and
vui_ext_pic_struct_present_flag[i], respectively, with i being the value for which vui_ext_dependency_id[i],
vui_ext_quality id[i], and vui_ext_temporal_id[i] are equal to hrdDlId, hrdQId, and hrdTId, respectively.

When the coded video sequence conforms to one or more of the profiles specified in Annex H and the decoding process
specified in Annex H is applied, the following is specified:

(&) When an access unit contains one or more buffering period SEI messages that are included in MV C scalable
nesting SEI messages, the buffering period SEI message that is associated with the operation point being decoded
is the buffering period SEI message that initializes the HRD. Let hrdVId[i] be equal to sei_op_view_id[i] for
all i in the range of 0 to num_view_components_op_minusl, inclusive, and let hrdTId be the value of

312 Rec. ITU-T H.264 (08/2021)

sei_op_temporal_id, that are associated with the MVC scalable nesting SEI message containing the buffering
period SEI message that initializes the HRD.

(b) The picture timing SEI messages that specify the removal timing of access units from the CPB and output timing
from the DPB are the picture timing SEI messages that are included in MVC scalable nesting SEI messages
associated with values of sei_op_view id[i] equal to hrdVId[i] for all i in the range of 0 to
num_view_components_op_minusl, inclusive, and sei_temporal_id equal to hrdTld.

(c) The HRD parameters that are used for conformance checking are the HRD parameters included in the MVC
video usability information extension of the active MV C sequence parameter set that are associated with values
of vui_mvc_view_id[i][j] for all j in the range of O to vui_mvc_num_target_output views_minusl[i],
inclusive, equal to hrdVId[j], and the value of vui_mvc_temporal_id[i] equal to hrdTId. For the specification
in this annex, num_units_in_tick, time_scale, fixed_frame_rate flag, nal_hrd_parameters present flag,
vcl_hrd_parameters_present_flag, low delay hrd _flag, and pic_struct _present flag are substituted with the
values of wvui_mvc_num_units_in_tick[i], wvui_mvc_time_scale[i], vui_mvc_fixed_frame_rate flag[i],
vui_mvc_nal_hrd_parameters_present_flag[i], vui_mvc_vcl_hrd_parameters_present_flag[i],
vui_mvc_low _delay hrd_flag[i], and vui_mvc_pic_struct_present_flag[i], respectively, with i being the value
for which wvui_mvc_view id[i] is equal to hrdvid[j] for all j in the range of 0 to
vui_mvc_num_traget output_views_minusl[i], inclusive, and vui_mvc_temporal_id[i] equal to hrdTld.

When the coded video sequence conforms to one or more of the profiles specified in Annex I and the decoding process
specified in Annex | is applied, the following is specified:

(a) When an access unit contains one or more buffering period SEI messages that are included in MVVCD scalable
nesting SEI messages, the buffering period SEI message that is associated with the operation point being decoded
is the buffering period SEI message that initializes the HRD. Let hrdVId[i] be equal to sei_op_view_id[i] for
all i in the range of 0 to num_view_components_op_minusl, inclusive, and let hrdTld be the value of
sei_op_temporal_id, that are associated with the MVVCD scalable nesting SEI message containing the buffering
period SEI message that initializes the HRD.

(b) The picture timing SEI messages that specify the removal timing of access units from the CPB and output timing
from the DPB are the picture timing SEI messages that are included in MVCD scalable nesting SEI messages
associated with values of sei_op_view id[i] equal to hrdVId[i] for all i in the range of 0 to
num_view_components_op_minusl, inclusive, and sei_temporal_id equal to hrdTld.

(c) The HRD parameter sets that are used for conformance checking are the HRD parameter sets, included in the
MV C video usability information extension of the active MVCD sequence parameter set, that are associated with
values of vui_mvc_view_id[i][j] for all j in the range of 0 to vui_mvc_num_target_output_views_minusl[i],
inclusive, equal to hrdVId[j], and the value of vui_mvc_temporal_id[i] equal to hrdTId. For the specification
in this annex, num_units_in_tick, time_scale, fixed frame_rate flag, nal_hrd_parameters present flag,
vcl_hrd_parameters_present_flag, low delay hrd flag, and pic_struct _present flag are substituted with the
values of wvui_mvc_num_units_in_tick[i], wvui_mvc_time_scale[i], vui_mvc_fixed_frame_rate_flag[i],
vui_mvc_nal_hrd_parameters_present_flag[i], vui_mvc_vcl_hrd_parameters_present flag[i],
vui_mvc_low_delay _hrd_flag[i], and vui_mvc_pic_struct_present_flag|[i], respectively, with i being the value
for which wvui_mvc_view id[i] is equal to hrdvid[j] for all j in the range of 0 to
vui_mvc_num_traget_output_views_minusl[i], inclusive, and vui_mvc_temporal_id[i] equal to hrdTld.

The HRD is used to check conformance of bitstreams and decoders as specified in clauses C.3 and C.4, respectively.

NOTE 9 — While conformance is guaranteed under the assumption that all frame-rates and clocks used to generate the bitstream
match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value.

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the number
of bits in a CPB just prior to or after removal of an access unit is not necessarily an integer.

The variable t. is derived as follows and is called a clock tick:
tc = num_units_in_tick + time_scale (C-1)
The following is specified for expressing the constraints in this annex:

— Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

— Let picture n be the primary coded picture or the decoded primary picture of access unit n.

Cl Operation of coded picture buffer (CPB)

The specifications in this clause apply independently to each set of CPB parameters that is present and to both the Type |
and Type Il conformance points shown in Figure C-1.

Rec. ITU-T H.264 (08/2021) 313

C.1.1 Timing of bitstream arrival

The HRD may be initialized at any one of the buffering period SEI messages. Prior to initialization, the CPB is empty.
NOTE — After initialization, the HRD is not initialized again by subsequent buffering period SEI messages.

Each access unit is referred to as access unit n, where the number n identifies the particular access unit. The access unit
that is associated with the buffering period SEI message that initializes the CPB is referred to as access unit 0. The value
of nis incremented by 1 for each subsequent access unit in decoding order.

The time at which the first bit of access unit n begins to enter the CPB is referred to as the initial arrival time t.i(n).
The initial arrival time of access units is derived as follows:

— If the access unit is access unit 0, t;(0) =0,

— Otherwise (the access unit is access unit n with n > 0), the following applies:

— If cbr_flag[SchedSelldx] is equal to 1, the initial arrival time for access unit n, is equal to the final arrival time
(which is derived below) of access unitn—1, i.e.,

ti(n) =tae(n—1) (C-2)

— Otherwise (cbr_flag[SchedSelldx] is equal to 0), the initial arrival time for access unit n is derived by
tai(n) = Max(tarf(N — 1), taicartiest(N)) (C-3)

where tai earliest(N) is derived as follows:

— Ifaccess unit n is not the first access unit of a subsequent buffering period, taiearliest(N) is derived as

taieartiest(N) = trn() — (initial_cpb_removal_delay[SchedSelldx] +
initial_cpb_removal_delay_offset[SchedSelldx]) + 90000 (C-4)

with t;n(n) being the nominal removal time of access unit n from the CPB as specified in clause C.1.2 and
initial_cpb_removal_delay[SchedSelldx] and initial_cpb_removal_delay offset[SchedSelldx] being
specified in the previous buffering period SEI message.

— Otherwise (access unit n is the first access unit of a subsequent buffering period), taiearliest(N) is derived as

taieartiest(N) = trn() — (initial_cpb_removal_delay[SchedSelldx] + 90000) (C-5)

with initial_cpb_removal_delay[SchedSelldx] being specified in the buffering period SEI message
associated with access unit n.

The final arrival time for access unit n is derived by
tai(n) =ts(n) + b(n) + BitRate[SchedSelldx] (C-6)

where b(n) is the size in bits of access unit n, counting the bits of the VCL NAL units and the filler data NAL units for
the Type | conformance point or all bits of the Type Il bitstream for the Type Il conformance point, where the Type | and
Type 11l conformance points are as shown in Figure C-1.

The values of SchedSelldx, BitRate[SchedSelldx], and CpbSize[SchedSelldx] are constrained as follows:

— If the content of the active sequence parameter sets for access unit n and access unit n — 1 differ, the HSS selects a
value SchedSelldx1 of SchedSelldx from among the values of SchedSelldx provided in the active sequence parameter
set for access unit n that results in a BitRate[SchedSelldx1] or CpbSize[SchedSelldx1] for access unit n. The value
of BitRate[SchedSelldx1] or CpbSize[SchedSelldx1] may differ from the value of BitRate[SchedSelldx0] or
CpbSize[SchedSelldx0] for the value SchedSelldx0 of SchedSelldx that was in use for access unit n — 1.

— Otherwise, the HSS continues to operate with the previous values of SchedSelldx, BitRate[SchedSelldx] and
CpbSize[SchedSelldx].

When the HSS selects values of BitRate[SchedSelldx] or CpbSize[SchedSelldx] that differ from those of the previous
access unit, the following applies:

— the variable BitRate[SchedSelldx] comes into effect at time tai(n)

— the variable CpbSize[SchedSelldx] comes into effect as follows:

314 Rec. ITU-T H.264 (08/2021)

— If the new value of CpbSize[SchedSelldx] exceeds the old CPB size, it comes into effect at time t.i(n),

— Otherwise, the new value of CpbSize[SchedSelldx] comes into effect at the time t.(n).

C.1.2 Timing of coded picture removal

When an access unit n is the access unit with n equal to 0 (the access unit that initializes the HRD), the nominal removal
time of the access unit from the CPB is specified by

tn(0) = initial_cpb_removal_delay[SchedSelldx] + 90000 (C-7)

When an access unit n is the first access unit of a buffering period that does not initialize the HRD, the nominal removal
time of the access unit from the CPB is specified by

ton(N) =tn(Ny) +tc * cpb_removal_delay(n) (C-8)

where tn(np) is the nominal removal time of the first access unit of the previous buffering period and
cpb_removal_delay(n) is the value of cpb_removal_delay specified in the picture timing SEI message associated with
access unit n.

The nominal removal time t;n(n) of an access unit n that is not the first access unit of a buffering period is given by
tn(N) =tn(Ny) +tc * cpb_removal_delay(n) (C-9)

where tn(ny) is the nominal removal time of the first access unit of the current buffering period and
cpb_removal_delay(n) is the value of cpb_removal_delay specified in the picture timing SEI message associated with
access unit n.

The removal time of access unit n is specified as follows:

— Iflow_delay_hrd_flag is equal to 0 or t;n(n) >=tx(n), the removal time of access unit n is specified by
t(n)=tn(n) (C-10)

— Otherwise (low_delay _hrd_flag is equal to 1 and t.n(n) < tar(n)), the removal time of access unit n is specified by
t(n)=tin(n)+tc*Ceil((tar(n) —tin(n)) +tc) (C-11)

NOTE — The latter case indicates that the size of access unit n, b(n), is so large that it prevents removal at the nominal removal
time.

When an access unit n is the first access unit of a buffering period, ny is set equal to n at the removal time t,(n) of the
access unit n.

C.2 Operation of the decoded picture buffer (DPB)

The decoded picture buffer contains frame buffers. When a coded video sequence conforming to one or more of the profiles
specified in Annex A is decoded by applying the decoding process specified in clauses 2 to 9, each of the frame buffers
may contain a decoded frame, a decoded complementary field pair or a single (non-paired) decoded field that is marked as
"used for reference" (reference pictures) or is held for future output (reordered or delayed pictures). When a coded video
sequence conforming to one or more of the profiles specified in Annex G is decoded by applying the decoding process
specified in Annex G, each frame buffer may contain a decoded frame, a decoded complementary field pair, a single (non-
paired) decoded field, a decoded reference base frame, a decoded reference base complementary field pair or a single (non-
paired) decoded reference base field that is marked as "used for reference" (reference pictures) or is held for future output
(reordered or delayed pictures). When a coded video sequence conforming to one or more of the profiles specified in
Annex H is decoded by applying the decoding process specified in Annex H, each of the frame buffers may contain a
decoded frame view component, a decoded complementary field view component pair, or a single (non-paired) decoded
field view component that is marked as "used for reference" (reference pictures) or is held for future output (reordered or
delayed pictures) or is held as reference for inter-view prediction (inter-view only reference components). When a coded
video sequence conforming to one or more of the profiles specified in Annex I is decoded by applying the decoding process
specified in Annex |, each of the frame buffers of the texture DPB may contain: a decoded depth frame view component,
a decoded complementary texture field view component pair, or a single (non-paired) decoded texture field view
component that is marked as "used for reference™ (reference pictures) or is held for future output (reordered or delayed
pictures) or is held as reference for inter-view prediction (inter-view only reference components). When a coded video
sequence conforming to one or more of the profiles specified in Annex | is decoded by applying the decoding process
specified in Annex I, each of the frame buffers of the depth DPB may contain a decoded depth frame view component, a

Rec. ITU-T H.264 (08/2021) 315

decoded complementary depth field view component pair, or a single (non-paired) decoded depth field view component
that is marked as "used for reference" (reference pictures) or is held for future output (reordered or delayed pictures) or is
held as reference for inter-view prediction (inter-view only reference components).

Prior to initialization, the DPB is empty (the DPB fullness is set to zero). The following steps specified in this clause all
happen instantaneously at t(n) and in the order listed. When the decoding process specified in Annex H or Annex | is
applied, the view components of the current primary coded picture are processed by applying the ordered steps to each
view component in increasing order of the associated view order index VOIdx. During the invocation of the process for a
particular texture view, only the texture view components of the particular view are considered. During the invocation of
the process for a particular depth view, only the depth view components of the particular view are considered. For each
view component of the current primary coded picture, the corresponding depth view component with the same view order
index VOIdx, if present, is processed after the texture view component.

1. The process of decoding gaps in frame_num and storing "non-existing" frames as specified in clause C.2.1 is
invoked.

2. The picture decoding and output process as specified in clause C.2.2 is invoked.

3. The process of removing pictures from the DPB before possible insertion of the current picture as specified in
clause C.2.3 is invoked.

4. The process of marking and storing the current decoded picture as specified in clause C.2.4 is invoked.

NOTE — When the decoding process specified in Annex G is applied, the DPB is only operated for decoded pictures and
reference base pictures associated with decoded pictures. The DPB is not operated for layer pictures with dependency_id less
than DependencyldMax (and associated reference base pictures). All decoded pictures and associated reference base pictures are
decoded pictures and associated reference base pictures for dependency_id equal to DependencyldMax, which represent the
results of the decoding process specified in clause G.8.

C.2.1 Decoding of gaps in frame_num and storage of "'non-existing"* frames

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VOIdx, with "picture” being replaced by "view component”, "frame" being replaced by "frame
view component”, and "field" being replaced by "field view component”. During the invocation of the process for a
particular view, only view components of the particular view are considered and view components of other views are not
marked as "unused for reference" or removed from the DPB. When the decoding process specified in Annex | is applied,
the process specified in this clause for Annex H is invoked for particular texture view or depth view with view order index
VOIdx, with each "view component™ being replaced by "texture view component™ or "depth view component”, "frame
view component™ being replaced by "texture frame view component” or "depth frame view component”, and "field view
component™ being replaced by "texture field view component"”. During the invocation of the process for a particular texture
view, only the texture view components of the particular view are considered and during the invocation of the process for
a particular depth view, only the depth view components of the particular view are considered and view components of

other views are not marked as "unused for reference" or removed from the DPB.

The DPB fullness represents the total number of non-empty frame buffers. When the decoding process specified in
Annex H is applied; this includes frame buffers that contain view components of other views. When the decoding process
specified in Annex | is applied, this includes frame buffers that contain texture or depth view components of other views.

When applicable, gaps in frame_num are detected by the decoding process and the generated frames are marked and
inserted into the DPB as specified below.

Gaps in frame_num are detected by the decoding process and the generated frames are marked as specified in
clauses 8.2.5.2 and G.8.2.5.

After the marking of each generated frame, each picture m marked by the "sliding window" process as "unused for
reference™ is removed from the DPB when it is also marked as "non-existing" or its DPB output time is less than or equal
to the CPB removal time of the current picture n; i.e., togs(M) <= t,(n), or it has OutputFlag equal to 0. When a frame or
the last field in a frame buffer is removed from the DPB, the DPB fullness is decremented by one. The "non-existing"”
generated frame is inserted into the DPB and the DPB fullness is incremented by one.

C.2.2 Picture decoding and output

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VOIdx.

When the decoding process specified in Annex | is applied, the process specified in this clause is invoked for a particular
texture view or depth view with view order index VOIdx.

The decoding of the current picture or view component (when applying the decoding process specified in Annex H or
Annex 1) and the derivation of the DPB output time (if applicable) is specified as follows:

316 Rec. ITU-T H.264 (08/2021)

— If the decoding process specified in clause 8 or Annex G is applied, the following applies:
— The current primary coded picture n is decoded.

— When picture n has OutputFlag equal to 1, its DPB output time t, gon(N) is derived by
togpb(N) =t:(n) + tc * dpb_output_delay(n) (C-12)

where dpb_output_delay(n) is the value of dpb_output_delay specified in the picture timing SEI message
associated with access unit n.

— Otherwise (the decoding process specified in Annex H or Annex | is applied), the following applies:
— The view component with view order index VOIdx of the current primary coded picture n is decoded.

— When VOIdx is equal to VOIdxMin and any of the view components of picture n has OutputFlag equal to 1, the
DPB output time toqon(n) for picture n is derived by Equation C-12, where dpb_output_delay(n) is the value
of dpb_output_delay specified in the picture timing SEI message associated with access unit n.

The output of the current picture or view component (when applying the decoding process specified in Annex H) is
specified as follows:

— If OutputFlag is equal to 1 and togpu(N') = t{ n), the current picture or view component is output.

NOTE 1 — When the current picture or view component has nal_ref_idc greater than 0 (when using the decoding process
specified in Annex G, nal_ref_idc is the syntax element of the target layer representation), it will be stored in the DPB.

— Otherwise, if OutputFlag is equal to 0, the current picture or view component is not output, but it may be stored in the
DPB as specified in clause C.2.4.

— Otherwise (OutputFlag is equal to 1 and togp(n) > t(n)), the current picture or view component is output later and
will be stored in the DPB (as specified in clause C.2.4) and is output at time to 4oo(n) unless indicated not to be output
by the decoding or inference of no_output_of_prior_pics_flag equal to 1 at a time that precedes togpn(N).

NOTE 2 — When the coded video sequence conforms to a profile specified in Annex H and the decoding process specified in

Annex H is used, the view components of all the target output views of a picture are output at the same time instant and in
increasing order of the view order index VOIdx.

NOTE 3 — When the coded video sequence conforms to a profile specified in Annex | and the decoding process specified in
Annex | is used, the view components of all the target output views of a picture are output at the same time instant and in
increasing order of the view order index VOIdx. A depth view component, if present, follows the texture view component
within the same view component.

When output, the picture or view component shall be cropped, using the cropping rectangle specified in the active sequence
parameter set for the picture or view component.

When the decoding process specified in clause 8 or Annex G is applied, the current picture n is a picture that is output and
is not the last picture of the bitstream that is output, the value of Aty gp(n) is derived by

Atogpn(') = to,gpp(Mn) — todpn() (C-13)

where n, indicates the picture that follows after picture n in output order and has OutputFlag equal to 1.

When the decoding process specified in Annex H or Annex | is applied, the current picture n is a picture that contains at
least one view component that is output and the current picture is not the last picture of the bitstream that contains at least
one view component that is output and VOIdx is equal to VOIdxMin, the value of Atogen(n) is derived by Equation C-13,
where n, indicates the picture that follows after picture n in output order and contains at least one any view component
with OutputFlag equal to 1.

The decoded picture or view component is temporarily stored (not in the DPB).

C.2.3 Removal of pictures from the DPB before possible insertion of the current picture

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular

view with view order index VOIdx, with "picture” being replaced by "view component”, “frame" being replaced by "frame
view component”, and "field" being replaced by "field view component".

When the decoding process specified in Annex | is applied, the process specified in this clause for Annex | is invoked for
particular texture view and depth view with view order index VOIdx, with each "view component" being replaced by
"texture view component™ or "depth view component"”, "frame view component" being replaced by "texture frame view
component" or "depth frame view component”, and "field view component” being replaced by "texture field view

component”. During the invocation of the process for a particular texture view, only the texture view components of the

Rec. ITU-T H.264 (08/2021) 317

particular view are considered and during the invocation of the process for a particular depth view, only the depth view
components of the particular view are considered.

When the decoding process specified in Annex H or Annex | is applied, the following process is specified for removing
inter-view only reference components of the current access unit from the DPB. By this process, view components of the
current view with view order index VOIdx are not removed from the DPB, but inter-view only reference components of
other views may be removed. The removal of inter-view only reference components is specified as follows:

— If the view order index VOIdx of the current view is equal to VOIdxMax, all inter-view only reference components
m for which any of the following conditions are true are removed from the DPB:

— OutputFlag is equal to 0,

— The DPB output time togpn(m) of the picture containing the view component m is less than or equal to the CPB
removal time t;(n) of the current picture.

— Otherwise (the view order index VOIdx of the current view is less than VOIdxMax), all inter-view only reference
components m for which both of the following conditions are true are removed from the DPB:

— OutputFlag is equal to 0 or the DPB output time to gon(M) of the picture containing the view component m is
less than or equal to the CPB removal time t,(n) of the current picture,

— One of the following conditions is true:

— The current view component is a view component of an anchor picture and the view_id of the inter-view
only reference component m is not equal to any value of anchor_ref IX[k][j], with X being equal to 0
or 1, k being any integer value greater than the view order index VVOIdx of the current view, and j being any
integer value in the range of 0 to Max(0, num_anchor_refs_IX[k]— 1), inclusive,

— The current view component is not a view component of an anchor picture and the view_id of the inter-view
only reference component m is not equal to any value of non_anchor_ref IX[k][j], with X being equal
to 0 or 1, k being any integer value greater than the view order index VOIdx of the current view, and j being
any integer value in the range of 0 to Max(0, num_non_anchor_refs_IX[k]—1), inclusive.

When the decoding process specified in Annex H is applied, for the following processes specified in this clause, only view
components of the particular view for which this clause is invoked are considered, and view components of other views
are not marked as "unused for reference” or removed from the DPB. When the decoding process specified in Annex | is
applied, for the following processes specified for Annex | in this clause, during the invocation of the process for a particular
texture view, only texture view components of the particular texture view are considered and during the invocation of the
process for a particular depth view, only depth view components of the particular depth view are considered, and view
components of other views are not marked as "unused for reference™ or removed from the DPB.

The DPB fullness represents the total number of non-empty frame buffers. When the decoding process specified in
Annex H is applied, this includes frame buffers that contain texture view components of other views. When the decoding
process specified in Annex | is applied, this includes frame buffers that contain texture or depth view components of other
views.

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows:

— If the decoded picture is an IDR picture the following applies:

1. Allreference pictures in the DPB are marked as "unused for reference™ as specified in clause 8.2.5.1 when a coded
video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the
decoding process specified in clauses 2 to 9, or as specified in clause G.8.2.4 when a coded video sequence
conforming to one or more of the profiles specified in Annex G is decoded by applying the decoding process
specified in Annex G, or as specified in clause H.8.3 when a coded video sequence conforming to one or more of
the profiles specified in Annex H is decoded by applying the decoding process specified in Annex H, or as
specified in clause 1.8.3 when a coded video sequence conforming to one or more of the profiles specified in
Annex | is decoded by applying the decoding process specified in Annex I.

2. When the IDR picture is not the first IDR picture decoded and the value of PicWidthinMbs or FrameHeightinMbs
or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of
PicWidthInMbs or FrameHeightinMbs or max_dec_frame_buffering derived from the sequence parameter set
that was active for the preceding picture, respectively, no_output_of prior_pics_flag is inferred to be equal to 1
by the HRD, regardless of the actual value of no_output_of prior_pics_flag.

NOTE - Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in
regard to changes in PicWidthinMbs or FrameHeightinMbs.

3. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB are
emptied without output of the pictures they contain, and DPB fullness is set to 0.

318 Rec. ITU-T H.264 (08/2021)

— Otherwise (the decoded picture is not an IDR picture), the following applies:

— If the slice header of the current picture includes memory_management_control_operation equal to 5, all
reference pictures in the DPB are marked as "unused for reference".

— Otherwise (the slice header of the current picture does not include memory management_control_operation
equal to 5), the decoded reference picture marking process specified in clause 8.2.5 is invoked when a coded
video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying the
decoding process specified in clauses 2 to 9, or the decoded reference picture marking process specified in
clause G.8.2.4 is invoked when a coded video sequence conforming to one or more of the profiles specified in
Annex G is decoded by applying the decoding process specified in Annex G, or the decoded reference picture
marking process specified in clause H.8.3 is invoked when a coded video sequence conforming to one or more
of the profiles specified in Annex H is decoded by applying the decoding process specified in Annex H, or the
decoded reference picture marking process specified in clause 1.8.3 is invoked when a coded video sequence
conforming to one or more of the profiles specified in Annex | is decoded by applying the decoding process
specified in Annex I.

All pictures m in the DPB, for which all of the following conditions are true, are removed from the DPB:

— picture m is marked as "unused for reference™ or picture m is a non-reference picture. When a picture is a reference
frame, it is considered to be marked as "unused for reference" only when both of its fields have been marked as
"unused for reference”,

— picture m is marked as "non-existing" or it has OutputFlag equal to 0 or its DPB output time to,go(M) is less than or
equal to the CPB removal time t;(n) of the current picture n.

When a frame or the last field in a frame buffer is removed from the DPB, the DPB fullness is decremented by one.

C.2.4 Current decoded picture marking and storage

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VOIdx, with "picture" being replaced by "view component”, "frame" being replaced by "frame
view component”, and "field" being replaced by "field view component”. When the decoding process specified in Annex |
is applied, the process specified in this clause for Annex | is invoked for particular texture view and depth view with view
order index VOIldx, with each "view component” being replaced by "texture view component™ and "depth view
component”, "frame view component” being replaced by "texture frame view component" and "depth frame view
component”, and "field view component" being replaced by "texture field view component”. In clause C.2.4.2, the DPB
output time to4pb(n) and the CPB removal time t,(n) of a view component are the DPB output time and the CPB removal

time of the picture n containing the view component.
The marking and storage of the current decoded picture is specified as follows:

— If the current picture is a reference picture, the marking and storage process for reference pictures as specified in
clause C.2.4.1 is invoked.

— Otherwise (the current picture is a non-reference picture), the storage process for non-reference pictures as specified
in clause C.2.4.2 is invoked.

C.2.4.1 Marking and storage of a reference picture into the DPB
The current picture is stored in the DPB as follows:

— If the current decoded picture is a second field (in decoding order) of a complementary reference field pair, and the
first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as the first field
of the pair.

— Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding process
specified in Annex G is applied and the current picture has store_ref base pic_flag equal to 1 (i.e., the current picture is
associated with a reference base picture), the associated reference base picture is stored in the DPB as follows:

— If the reference base picture is a second field (in decoding order) of a complementary reference base field pair, and
the first field of the pair is still in the DPB, the reference base picture is stored in the same frame buffer as the first
field of the pair.

— Otherwise, the reference base picture is stored in an empty frame buffer, and the DPB fullness is incremented by one.

Rec. ITU-T H.264 (08/2021) 319

C.2.4.2 Storage of a non-reference picture into the DPB

The variable storePicFlag is derived as follows:

— If any of the following conditions are true, storePicFlag is set equal to 1:
— the current picture n has OutputFlag equal to 1 and togen(n) > t«(n),

— the decoding process specified in Annex H or Annex | is used and the current view component has a view order
index VOIdx less than VOIdxMax and inter_view_flag equal to 1.

— Otherwise, storePicFlag is set equal to 0.
When storePicFlag is equal to 1, the current picture is stored in the DPB as follows:

— If the current decoded picture is a second field (in decoding order) of a complementary non-reference field pair, and
the first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as the first
field of the pair.

— Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

C.3 Bitstream conformance
A bitstream of coded data conforming to this Recommendation | International Standard fulfils the following requirements.

The bitstream is constructed according to the syntax, semantics, and constraints specified in this
Recommendation | International Standard outside of this annex.

The bitstream is tested by the HRD as specified below:

For Type | bitstreams, the number of tests carried out is equal to cpb_cnt_minusl + 1 where cpb_cnt_minusl is either the
syntax element of hrd_parameters() following the vcl_hrd_parameters_present_flag or is determined by the application
by other means not specified in this Recommendation | International Standard. One test is carried out for each bit rate and
CPB size combination specified by hrd_parameters() following the vcl_hrd_parameters_present_flag. Each of these tests
is conducted at the Type | conformance point shown in Figure C-1.

For Type Il bitstreams there are two sets of tests. The number of tests of the first set is equal to cpb_cnt_minusl + 1 where
cpb_cnt_minusl is either the syntax element of hrd_parameters() following the vcl_hrd_parameters_present_flag or is
determined by the application by other means not specified in this Recommendation | International Standard. One test is
carried out for each bit rate and CPB size combination. Each of these tests is conducted at the Type | conformance point
shown in Figure C-1. For these tests, only VCL and filler data NAL units are counted for the input bit rate and CPB storage.

The number of tests of the second set, for Type Il bitstreams, is equal to cpb_cnt_minusl + 1 where cpb_cnt_minusl is
either the syntax element of hrd_parameters() following the nal_hrd_parameters_present_flag or is determined by the
application by other means not specified in this Recommendation | International Standard. One test is carried out for each
bit rate and CPB size combination specified by hrd_parameters() following the nal_hrd_parameters_present_flag. Each of
these tests is conducted at the Type Il conformance point shown in Figure C-1. For these tests, all NAL units (of a Type Il
NAL unit stream) or all bytes (of a byte stream) are counted for the input bit rate and CPB storage.
NOTE 1 — NAL HRD parameters established by a value of SchedSelldx for the Type Il conformance point shown in Figure C-1 are
sufficient to also establish VCL HRD conformance for the Type | conformance point shown in Figure C-1 for the same values of
initial_cpb_removal_delay[SchedSelldx], ~BitRate[SchedSelldx], and CpbSize[SchedSelldx] for the VBR case
(cbr_flag[SchedSelldx] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow
into the Type Il conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the
time a next picture is scheduled to begin to arrive. For example, when a coded video sequence conforming to one or more of the
profiles specified in Annex A is decoded by applying the decoding process specified in clauses 2 to 9, when NAL HRD parameters
are provided for the Type Il conformance point that not only fall within the bounds set for NAL HRD parameters for profile
conformance in item j(of clause A.3.1 or item h(of clause A.3.3 (depending on the profile in use) but also fall within the bounds
set for VCL HRD parameters for profile conformance in item i(of clause A.3.1 or item g(of clause A.3.3 (depending on the profile
in use), conformance of the VCL HRD for the Type I conformance point is also assured to fall within the bounds of item i(of
clause A.3.1.

For conforming bitstreams, all of the following conditions shall be fulfilled for each of the tests:

1. For each access unit n, with n>0, associated with a buffering period SEI message, with Atge(n') specified by
Atgoo(n) =90000 * (trn(N) —ta(n—1)) (C-14)

the value of initial_cpb_removal_delay[SchedSelldx] shall be constrained as follows:
— Ifcbr_flag[SchedSelldx] is equal to 0O,

320 Rec. ITU-T H.264 (08/2021)

initial_cpb_removal_delay[SchedSelldx] <= Ceil(Atgoo(n)) (C-15)
— Otherwise (cbr_flag[SchedSelldx] is equal to 1),
Floor(Atg,o(n)) <= initial_cpb_removal_delay[SchedSelldx] <= Ceil(Atgoo(n)) (C-16)

NOTE 2 — The exact number of bits in the CPB at the removal time of each picture may depend on which buffering
period SEI message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified
constraints must be obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the
HRD may be initialized at any one of the buffering period SEI messages.

2. A CPB overflow is specified as the condition in which the total number of bits in the CPB is larger than the CPB
size. The CPB shall never overflow.

3. A CPB underflow is specified as the condition in which t,,(n) is less than ts(n). When low_delay hrd_flag is
equal to 0, the CPB shall never underflow.

4. The nominal removal times of pictures from the CPB (starting from the second picture in decoding order), shall
satisfy the constraints on t.n(n) and t(n) expressed in clauses A.3.1 through A.3.3 for the profile and level
specified in the bitstream when a coded video sequence conforming to one or more of the profiles specified in
Annex A is decoded by applying the decoding process specified in clauses 2 to 9, and they shall satisfy the
constraints on t;n(n) and t:(n) expressed in clauses G.10.2.1 and G.10.2.2 for profile and level specified in the
bitstream when a coded video sequence conforming to one or more of the profiles specified in Annex G is decoded
by applying the decoding process specified in Annex G, and they shall satisfy the constraints ont;n(n) and t(n)
expressed in clause H.10.2 for the profile and level specified in the bitstream when a coded video sequence
conforming to one or more of the profiles specified in Annex H is decoded by applying the decoding process
specified in Annex H, and they shall satisfy the constraints on t;n(n) and t(n) expressed in clause 1.10.2 for the
profile and level specified in the bitstream when a coded video sequence conforming to one or more of the profiles
specified in Annex | is decoded by applying the decoding process specified in Annex I.

5. Immediately after any decoded picture is added to the DPB, the fullness of the DPB shall be less than or equal to
the DPB size as constrained by Annexes A, D, and E and clauses G.10, G.13, G.14, H.10, H.13, H.14, and 1.14 for
the profile and level specified in the bitstream.

6. All reference pictures shall be present in the DPB when needed for prediction. Each picture shall be present in the
DPB at its DPB output time unless it is not stored in the DPB at all, or is removed from the DPB before its output
time by one of the processes specified in clause C.2.

7. The value of A gpn(n) as given by Equation C- 713, which is the difference between the output time of a picture and
that of the first picture following it in output order and having OutputFlag equal to 1, shall satisfy the constraint
expressed in clause A.3.1 for the profile and level specified in the bitstream when a coded video sequence
conforming to one or more of the profiles specified in Annex A is decoded by applying the decoding process
specified in clauses 2 to 9, and it shall satisfy the constraint expressed in clause G.10.2.1 for profile and level
specified in the bitstream when a coded video sequence conforming to one or more of the profiles specified in
Annex G is decoded by applying the decoding process specified in Annex G, and it shall satisfy the constraints
expressed in clause H.10.2 for the profile and level specified in the bitstream when a coded video sequence
conforming to one or more of the profiles specified in Annex H is decoded by applying the decoding process
specified in Annex H, and it shall satisfy the constraints expressed in clause 1.10.2 for the profile and level specified
in the bitstream when a coded video sequence conforming to one or more of the profiles specified in Annex | is
decoded by applying the decoding process specified in Annex I.

C4 Decoder conformance
A decoder conforming to this Recommendation | International Standard fulfils the following requirements.

A decoder claiming conformance to a specific profile and level shall be able to decode successfully all conforming
bitstreams specified for decoder conformance in clause C.3, provided that all sequence parameter sets and picture
parameter sets referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages are
conveyed to the decoder, in a timely manner, either in the bitstream (by non-VCL NAL units), or by external means not
specified by this Recommendation | International Standard.

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order
conformance.

To check conformance of a decoder, test bitstreams conforming to the claimed profile and level, as specified in clause C.3
are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test (DUT). All pictures

Rec. ITU-T H.264 (08/2021) 321

output by the HRD shall also be output by the DUT and, for each picture output by the HRD, the values of all samples that
are output by the DUT for the corresponding picture shall be equal to the values of the samples output by the HRD.

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only from
the subset of values of SchedSelldx for which the bit rate and CPB size are restricted as specified in Annex A, Annex G,
Annex H, and Annex | for the specified profile and level, or with "interpolated" delivery schedules as specified below for
which the bit rate and CPB size are restricted as specified in Annex A, Annex G, Annex H, and Annex |. The same delivery
schedule is used for both the HRD and DUT.

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minusl greater than 0, the
decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an “interpolated” delivery
schedule specified as having peak bit rate r, CPB size c(r), and initial CPB removal delay (f(r) <+ r) as follows:

o = (r— BitRate[SchedSelldx — 1]) + (BitRate[SchedSelldx] — BitRate[SchedSelldx —11]), (C-17)
c(r) =a * CpbSize[SchedSelldx] + (1 — a) * CpbSize[SchedSelldx—11], (C-18)

f(r) =a = initial_cpb_removal_delay[SchedSelldx] * BitRate[SchedSelldx] +
(1- o) *initial_cpb_removal_delay[SchedSelldx — 1] * BitRate[SchedSelldx — 1] (C-19)

for any SchedSelldx > 0 and r such that BitRate[SchedSelldx — 1] <= r <= BitRate[SchedSelldx] such that r and c(r)
are within the limits as specified in Annex A, Annex G, Annex H, and Annex | for the maximum bit rate and buffer size
for the specified profile and level.

NOTE 1 — initial_cpb_removal_delay[SchedSelldx] can be different from one buffering period to another and have to be
re-calculated.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time
of the first bit) of picture output is the same for both HRD and the DUT up to a fixed delay.

For output order decoder conformance, the HSS delivers the bitstream to the DUT "by demand" from the DUT, meaning
that the HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing.

NOTE 2 — This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest access unit.

A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules
specified in the bitstream such that the bit rate and CPB size are restricted as specified in Annex A, Annex G, Annex H,
and Annex |. The order of pictures output shall be the same for both HRD and the DUT.

For output order decoder conformance, the HRD CPB size is equal to CpbSize[SchedSelldx] for the selected schedule
and the DPB size is equal to MaxDpbFrames. Removal time from the CPB for the HRD is equal to final bit arrival time
and decoding is immediate. The operation of the DPB of this HRD is specified in clause C.4.1.

C.4.1 Operation of the output order DPB

The decoded picture buffer contains frame buffers. When a coded video sequence conforming to one or more of the profiles
specified in Annex A is decoded by applying the decoding process specified in clauses 2 to 9, each of the frame buffers
may contain a decoded frame, a decoded complementary field pair or a single (non-paired) decoded field that is marked as
"used for reference™ or is held for future output (reordered pictures). When a coded video sequence conforming to one or
more of the profiles specified in Annex G is decoded by applying the decoding process specified in Annex G, each frame
buffer may contain a decoded frame, a decoded complementary field pair, a single (non-paired) decoded field, a decoded
reference base frame, a decoded reference base complementary field pair or a single (non-paired) decoded reference base
field that is marked as "used for reference" (reference pictures) or is held for future output (reordered or delayed pictures).
When a coded video sequence conforming to one or more of the profiles specified in Annex H is decoded by applying the
decoding process specified in Annex H, each of the frame buffers may contain a decoded frame view component, a decoded
complementary field view component pair, or a single (non-paired) decoded field view component that is marked as "used
for reference” (reference pictures) or is held for future output (reordered or delayed pictures) or is held for inter-view
prediction (inter-view only reference components). When a coded video sequence conforming to one or more of the profiles
specified in Annex | is decoded by applying the decoding process specified in Annex I, each of the frame buffers of the
texture DPB may contain a decoded texture frame view component, a decoded complementary texture field view
component pair, a single (non-paired) decoded texture field view component that is marked as "used for reference"
(reference pictures) or is held for future output (reordered or delayed pictures) or is held for inter-view prediction (inter-
view only reference components). When a coded video sequence conforming to one or more of the profiles specified in
Annex | is decoded by applying the decoding process specified in Annex I, each of the frame buffers of the depth DPB
may contain a decoded depth frame view component, a decoded complementary depth field view component pair, or a
single (non-paired) decoded depth field view component that is marked as "used for reference” (reference pictures) or is
held for future output (reordered or delayed pictures) or is held as reference for inter-view prediction (inter-view only
reference components).

322 Rec. ITU-T H.264 (08/2021)

At HRD initialization, the DPB fullness, measured in non-empty frame buffers, is set equal to 0. The following steps all
happen instantaneously when an access unit is removed from the CPB, and in the order listed. When the decoding process
specified in Annex H or Annex | is applied, the view components of the current primary coded picture are processed by
applying the ordered steps to each view component in increasing order of the associated view order index VOIdx. The
invocation of the process for a depth view component, if present, follows the invocation of the process for the texture view
component within the same view component.

1. The process of decoding gaps in frame_num and storing "non-existing™ frames as specified in clause C.4.2 is
invoked.

2. The picture decoding and output process as specified in clause C.4.3 is invoked.

3. The process of removing pictures from the DPB before possible insertion of the current picture as specified in
clause C.4.4 is invoked.

4. The process of marking and storing the current decoded picture as specified in clause C.4.5 is invoked.

NOTE — When the decoding process specified in Annex G is applied, the DPB is only operated for decoded pictures and
reference base pictures associated with decoded pictures. The DPB is not operated for layer pictures with dependency _id less
than DependencyldMax (and associated reference base pictures). All decoded pictures and associated reference base pictures are
decoded pictures and associated reference base pictures for dependency_id equal to DependencyldMax, which represent the
results of the decoding process specified in clause G.8.

C.4.2 Decoding of gaps in frame_num and storage of "'non-existing"* pictures

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VOIdx, with "picture" being replaced by "view component”, "frame" being replaced by "frame
view component”, and “field" being replaced by "field view component”. During the invocation of the process for a
particular view, only view components of the particular view are considered and view components of other views are not

marked as "unused for reference" or removed from the DPB.

When the decoding process specified in Annex I is applied, the process specified in this clause for Annex H is invoked for
particular texture view and depth view with view order index VOIdx, with each "view component" being replaced by
"texture view component” or "depth view component”, "frame view component” being replaced by "texture frame view
component” or "depth frame view component”, and "field view component” being replaced by "texture field view
component”. During the invocation of the process for a particular texture view, only the texture view components of the
particular view are considered and during the invocation of the process for a particular depth view, only the depth view
components of the particular view are considered and view components of other views are not marked as "unused for

reference” or removed from the DPB.

The DPB fullness represents the total number of non-empty frame buffers. When the decoding process specified in
Annex H is applied, this includes frame buffers that contain view components of other views. When the decoding process
specified in Annex | is applied, this includes frame buffers that contain texture or depth view components of other views.

When applicable, gaps in frame_num are detected by the decoding process and the necessary number of "non-existing"
frames are inferred in the order specified by the generation of values of UnusedShortTermFrameNum in Equation 7-24
and are marked as specified in clauses 8.2.5.2 and G.8.2.5. Frame buffers containing a frame or a complementary field pair
or a non-paired field which are marked as "not needed for output™ and "unused for reference" are emptied (without output),
and the DPB fullness is decremented by the number of frame buffers emptied. Each "non-existing" frame is stored in the
DPB as follows:

— When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified in
clause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the "non-existing"” frame.

— The "non-existing" frame is stored in an empty frame buffer and is marked as "not needed for output”, and the DPB
fullness is incremented by one.

C.4.3 Picture decoding

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VVOIdx.

When the decoding process specified in Annex | is applied, the process specified for Annex H in this clause is invoked for
a particular texture view and depth view with view order index VOIdx.

The decoding of the current picture or view component (when applying the decoding process specified in Annex H or
Annex 1) is specified as follows:

— If the decoding process specified in clause 8 or Annex G is applied, the current primary coded picture n is decoded
and is temporarily stored (not in the DPB).

Rec. ITU-T H.264 (08/2021) 323

— Otherwise (the decoding process specified in Annex H or Annex | is applied), the view component with view order
index VOIdx of the current primary coded picture n is decoded and is temporarily stored (not in the DPB).

C.4.4 Removal of pictures from the DPB before possible insertion of the current picture

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular

view with view order index VOIdx, with "picture" being replaced by "view component”, "frame" being replaced by "frame
view component”, and "field" being replaced by "field view component".

When the decoding process specified in Annex I is applied, the process specified in this clause for Annex H is invoked for
particular texture view and depth view with view order index VOIdx, with each "view component™" being replaced by
"texture view component” or "depth view component”, "“frame view component" being replaced by "texture frame view
component” or "depth frame view component”, and "field view component” being replaced by "texture field view
component”. During the invocation of the process for a particular texture view, only the texture view components of the
particular view are considered and during the invocation of the process for a particular depth view, only the depth view
components of the particular view are considered.

When the decoding process specified in Annex H or Annex | is applied, the following process is specified for emptying
frame buffers containing inter-view only reference components of the current access unit. By this process, frame buffers
that contain view components of the current view with view order index VOIdx are not emptied, but frame buffers that
contain inter-view only reference components of other views may be emptied. The process is specified as follows:

— If the view order index VOIdx of the current view is equal to VOldxMax, all frame buffers containing a frame or a
complementary field pair or a non-paired field which are marked as "not needed for output" and "unused for reference”
are emptied (without output), and the DPB fullness is decremented by the number of frame buffers emptied.

NOTE 1 — At this stage of the process, all frame buffers that contain a frame or a complementary field pair or a
non-paired field marked as "not needed for output” and "unused for reference" are frame buffers that contain an inter-
view only reference component (of the current access unit and a view with view order index less than VOIdx) with
OutputFlag equal to 0.

— Otherwise (the view order index VOIdx of the current view is less than VOIdxMax), frame buffers containing a frame
or a complementary field pair or a non-paired field for which both of the following conditions are true are emptied
(without output), and the DPB fullness is decremented by the number of frame buffers emptied:

— the frame or complementary field pair or non-paired field is marked as "not needed for output” and "unused for
reference”,
NOTE 2 — At this stage of the process, all frame buffers that contain a frame or a complementary field pair or a
non-paired field marked as "not needed for output” and "unused for reference" are frame buffers that contain an inter-
view only reference component (of the current access unit and a view with view order index less than VOIdx) with
OutputFlag equal to 0.

— one of the following conditions is true:

— the current view component is a view component of an anchor picture and the view_id of the frame or
complementary field pair or non-paired field is not equal to any value of anchor_ref IX[k][j], with X
being equal to 0 or 1, k being any integer value greater than the view order index VOIdx of the current view,
and j being any integer value in the range of 0 to Max(0, num_anchor_refs IX[k] —1), inclusive,

— the current view component is not a view component of an anchor picture and the view_id of the frame or
complementary field pair or non-paired field is not equal to any value of non_anchor_ref IX[k][]], with
X being equal to 0 or 1, k being any integer value greater than the view order index VOIdx of the current
view, and j being any integer value in the range of 0 to Max(0, num_non_anchor_refs IX[k]—1),
inclusive.

When the decoding process specified in Annex H or Annex | is applied, for the following processes specified in this clause,
only view components of the particular view for which this clause is invoked are considered, and frame buffers containing
view components of other views are not emptied. The DPB fullness represents the total number of non-empty frame buffers,
including frame buffers that contain view components of other views.

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows:

— If the decoded picture is an IDR picture the following applies:

1. All reference pictures in the DPB are marked as "unused for reference" as specified in clause 8.2.5 when a
coded video sequence conforming to one or more of the profiles specified in Annex A is decoded by applying
the decoding process specified in clauses 2 to 9, or as specified in clause G.8.2.4 when a coded video sequence
conforming to one or more of the profiles specified in Annex G is decoded by applying the decoding process
specified in Annex G, or as specified in clause H.8.3 when a coded video sequence conforming to one or more
of the profiles specified in Annex H is decoded by applying the decoding process specified in Annex H, or as

324 Rec. ITU-T H.264 (08/2021)

specified in clause 1.8.3 when a coded video sequence conforming to one or more of the profiles specified in
Annex | is decoded by applying the decoding process specified in Annex I.

2. When the IDR picture is not the first IDR picture decoded and the value of PicWidthinMbs or
FrameHeightInMbs or max_dec_frame_buffering derived from the active sequence parameter set is different
from the value of PicWidthInMbs or FrameHeightinMbs or max_dec_frame_buffering derived from the
sequence parameter set that was active for the preceding picture, respectively, no_output_of prior_pics_flag is
inferred to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag.

NOTE 3 — Decoder implementations should try to handle changes in the value of PicWidthInMbs or FrameHeightinMbs
or max_dec_frame_buffering more gracefully than the HRD.

3. When no_output_of prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB
are emptied without output of the pictures they contain, and DPB fullness is set to 0.

— Otherwise (the decoded picture is not an IDR picture), the decoded reference picture marking process is invoked as
specified in clause 8.2.5 when a coded video sequence conforming to one or more of the profiles specified in Annex A
is decoded by applying the decoding process specified in clauses 2 to 9, or as specified in clause G.8.2.4 when a coded
video sequence conforming to one or more of the profiles specified in Annex G is decoded by applying the decoding
process specified in Annex G, or as specified in clause H.8.3 when a coded video sequence conforming to one or
more of the profiles specified in Annex H is decoded by applying the decoding process specified in Annex H, or as
specified in clause 1.8.3 when a coded video sequence conforming to one or more of the profiles specified in Annex |
is decoded by applying the decoding process specified in Annex |. Frame buffers containing a frame or a
complementary field pair or a non-paired field which are marked as "not needed for output" and "unused for reference"
are emptied (without output), and the DPB fullness is decremented by the number of frame buffers emptied.

When the current picture has a memory_management_control_operation equal to 5 or is an IDR picture for which
no_output_of prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, the following two steps are performed.

1. Frame buffers containing a frame or a complementary field pair or a non-paired field which are marked as "not
needed for output" and "unused for reference" are emptied (without output), and the DPB fullness is decremented
by the number of frame buffers emptied.

2. All non-empty frame buffers in the DPB are emptied by repeatedly invoking the "bumping" process specified in
clause C.4.5.3, and the DPB fullness is set to 0.

C.45 Current decoded picture marking and storage

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VOIdx, with "picture” being replaced by "view component”, "frame" being replaced by "frame
view component”, and "field" being replaced by "field view component”. During the invocation of the process for a
particular view, only view components of the particular view are considered and frame buffers containing view components

of other views are not emptied.

When the decoding process specified in Annex I is applied, the process specified in this clause for Annex H is invoked for
particular texture view and depth view with view order index VOIdx, with each "view component" being replaced by
"texture view component” or "depth view component”, "frame view component" being replaced by "texture frame view
component™ or "depth frame view component”, and "field view component” being replaced by “texture field view
component”. During the invocation of the process for a particular texture view, only the texture view components of the
particular view are considered and during the invocation of the process for a particular depth view, only the depth view
components of the particular view are considered and frame buffers containing view components of other views are not

emptied.

The DPB fullness represents the total number of non-empty frame buffers. When the decoding process specified in
Annex H is applied, this includes frame buffers that contain view components of other views. When the decoding process
specified in Annex | is applied, this includes frame buffers that contain texture or depth view components of other views.

The marking and storage of the current decoded picture is specified as follows:

— Ifthe current picture is a reference picture, the storage and marking process for decoded reference pictures as specified
in clause C.4.5.1 is invoked.

— Otherwise (the current picture is a non-reference picture), the storage and marking process for decoded non-reference
pictures as specified in clause C.4.5.2 is invoked.

Rec. ITU-T H.264 (08/2021) 325

C.4.5.1 Storage and marking of a reference decoded picture into the DPB
The current picture is stored in the DPB as follows:

— Ifthe current decoded picture is the second field (in decoding order) of a complementary reference field pair, and the
first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first field of the
pair and the following applies:

— If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output™.
— Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".

— Otherwise, the following operations are performed:

1. When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified
in clause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the current decoded
picture.

2. The current decoded picture is stored in an empty frame buffer, the DPB fullness is incremented by one, and
the following applies:

— If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output”.
— Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".

When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding process
specified in Annex G is applied and the current picture has store_ref base pic_flag equal to 1 (i.e., the current picture is
associated with a reference base picture), the associated reference base picture is stored in the DPB as follows:

— If the reference base picture is a second field (in decoding order) of a complementary reference base field pair, and
the first field of the pair is still in the DPB, the reference base picture is stored in the same frame buffer as the first
field of the pair and marked as "not needed for output”.

— Otherwise, the following operations are performed:

1. When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process
specified in clause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the
reference base picture.

2. The reference base picture is stored in an empty frame buffer and marked as "not needed for output™ and the
DPB fullness is incremented by one.

C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB
The current picture is associated with a variable StorelnterViewOnlyRefFlag, which is derived as follows:

— If the decoding process specified in Annex H or Annex | is applied, the current view component has a view order
index VOIdx less than VOIdxMax and inter_view_flag equal to 1, StorelnterViewOnlyRefFlag is set equal to 1.

— Otherwise, StorelnterViewOnlyRefFlag is set equal to 0.

The current picture is stored in the DPB or output as follows:

— Ifthe current decoded picture is the second field (in decoding order) of a complementary non-reference field pair and
the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first field of
the pair and the following applies:

— If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output".

— Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".

— Otherwise, if the current picture has OutputFlag equal to 0 and StorelnterViewOnlyRefFlag equal to 0, the DPB is
not modified and the current picture is not output.

— Otherwise, if the current picture has StorelnterViewOnlyRefFlag equal to 1, the following operations are performed:

1. When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified
in clause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the current decoded
picture.

2. The current decoded picture is stored in an empty frame buffer, the DPB fullness is incremented by one, and
the following applies:

— If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output".
— Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".

326 Rec. ITU-T H.264 (08/2021)

— Otherwise, the following operations are performed repeatedly until the current decoded picture has been cropped and
output or has been stored in the DPB:

— If there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the following applies:

— If the current picture does not have a lower value of PicOrderCnt() than all pictures in the DPB that are
marked as "needed for output", the "bumping" process described in clause C.4.5.3 is performed.

— Otherwise (the current picture has a lower value of PicOrderCnt() than all pictures in the DPB that are
marked as "needed for output™), the current picture is cropped, using the cropping rectangle specified in
the active sequence parameter set for the picture and the cropped picture is output.

— Otherwise (there is an empty frame buffer, i.e., DPB fullness is less than DPB size), the current decoded picture
is stored in an empty frame buffer and is marked as "needed for output", and the DPB fullness is incremented
by one.

C.4.5.3 "Bumping" process

When the decoding process specified in Annex H is applied, the process specified in this clause is invoked for a particular
view with view order index VOIdx, with "picture” being replaced by "view component”, "frame" being replaced by "frame
view component”, and "field" being replaced by "field view component”. During the invocation of the process for a
particular view, only view components of the particular view are considered and frame buffers containing view components

of other views are not emptied.

When the decoding process specified in Annex I is applied, the process specified in this clause for Annex H is invoked for
particular texture view and depth view with view order index VOIdx, with each "view component" being replaced by
"texture view component” or "depth view component”, "frame view component" being replaced by "texture frame view
component” or "depth frame view component”, and "field view component” being replaced by "texture field view
component”. During the invocation of the process for a particular texture view, only the texture view components of the
particular view are considered while respective depth view components may be cropped and output too During the
invocation of the process for a particular depth view, only the depth view components of the particular view are considered
and frame buffers containing view components of other views are not emptied. The DPB fullness represents the total
number of non-empty frame buffers, including frame buffers that contain view components of other views, for the texture
DPB or the depth DPB depending on whether the process is invoked for a texture view or a depth view, respectively.

The DPB fullness represents the total number of non-empty frame buffers. When the decoding process specified in
Annex H is applied, this includes frame buffers that contain view components of other views. When the decoding process
specified in Annex | is applied, this includes frame buffers that contain texture or depth view components of other views.

The "bumping" process is invoked in the following cases.

— There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for
storage of an inferred "non-existing" frame, as specified in clause C.4.2.

— The current picture is an IDR picture and no_output_of prior_pics_flag is not equal to 1 and is not inferred to be
equal to 1, as specified in clause C.4.4.

— The current picture has memory_management_control_operation equal to 5, as specified in clause C.4.4.

— There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for
storage of a decoded (non-IDR) reference picture or a reference base picture, as specified in clause C.4.5.1.

— There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference
picture that is not the second field of a complementary non-reference field pair and the current picture has OutputFlag
equal to 1 and there are pictures in the DPB that are marked as "needed for output™ that precede the current non-
reference picture in output order, as specified in clause C.4.5.2, so an empty buffer is needed for storage of the current
picture.

— There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference
picture that is not the second field of a complementary non-reference field pair and the current picture has
StorelnterViewOnlyRefFlag equal to 1, as specified in clause C.4.5.2, so an empty buffer is needed for storage of the
current picture.

The "bumping" process consists of the following ordered steps:
1. The picture or complementary reference field pair that is considered first for output is selected as follows:

a. The frame buffer is selected that contains the picture having the smallest value of PicOrderCnt() of all
pictures in the DPB marked as "needed for output".

b. Depending on the frame buffer, the following applies:

Rec. ITU-T H.264 (08/2021) 327

328

— If this frame buffer contains a complementary non-reference field pair with both fields marked as
"needed for output" and both fields have the same PicOrderCnt(), the first of these two fields in
decoding order is considered first for output.

— Otherwise, if this frame buffer contains a complementary reference field pair with both fields marked
as "needed for output™ and both fields have the same PicOrderCnt(), the entire complementary reference
field pair is considered first for output.

NOTE — When the two fields of a complementary reference field pair have the same value of PicOrderCnt(), this

"bumping" process will output these pictures together, although the two fields have different output times from a
decoder that satisfies output timing conformance criteria (as specified in clause C.2.2).

— Otherwise, the picture in this frame buffer that has the smallest value of PicOrderCnt() is considered
first for output.

Depending on whether a single picture or a complementary reference field pair is considered for output, the
following applies:

If a single picture is considered first for output, this picture is cropped, using the cropping rectangle specified
in the active sequence parameter set for the picture, the cropped picture is output, and the picture is marked as
"not needed for output".

Otherwise (a complementary reference field pair is considered first for output), the two fields of the
complementary reference field pair are both cropped, using the cropping rectangle specified in the active
sequence parameter set for the pictures, the two fields of the complementary reference field pair are output
together, and both fields of the complementary reference field pair are marked as "not needed for output".

When there is a single depth view component or a complementary depth view component pair having the same
values of view_id and PicOrderCnt() as the single picture or complementary reference field pair considered for
output, the single depth view component or complementary depth view component pair are output as in step 2.

The frame buffer that included the picture or complementary reference field pair that was cropped and output is
checked, and when any of the following conditions are true, the frame buffer is emptied and the DPB fullness is
decremented by 1:

The frame buffer contains a non-reference non-paired field.
The frame buffer contains a non-reference frame.

The frame buffer contains a complementary non-reference field pair with both fields marked as "not needed
for output”.

The frame buffer contains a non-paired reference field marked as "unused for reference".
The frame buffer contains a reference frame with both fields marked as "unused for reference".

The frame buffer contains a complementary reference field pair with both fields marked as "unused for
reference™ and "not needed for output".

Rec. ITU-T H.264 (08/2021)

Annex D

Supplemental enhancement information

(This annex forms an integral part of this Recommendation | International Standard.)

This annex specifies syntax and semantics for SEI message payloads.

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not required
for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process
this information for output order conformance to this Recommendation | International Standard (see Annex C for the
specification of conformance). Some SEI message information is required to check bitstream conformance and for output
timing decoder conformance.

In Annex D, specification for presence of SEI messages are also satisfied when those messages (or some subset of them)
are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International Standard.
When present in the bitstream, SEI messages shall obey the syntax and semantics specified in clauses 7.3.2.3 and 7.4.2.3
and this annex. When the content of an SEI message is conveyed for the application by some means other than presence
within the bitstream, the representation of the content of the SEI message is not required to use the same syntax specified
in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are
counted.

D.1 SEI payload syntax

D.1.1 General SEI message syntax

sei_payload(payloadType, payloadSize) { C Descriptor

if(payloadType == 0)

buffering_period(payloadSize) 5
else if(payloadType == 1)

pic_timing(payloadSize) 5
else if(payloadType == 2)

pan_scan_rect(payloadSize) 5
else if(payloadType == 3)

filler_payload(payloadSize) 5
else if(payloadType == 4)

user_data_registered_itu_t_t35(payloadSize) 5
else if(payloadType == 5)

user_data_unregistered(payloadSize) 5
else if(payloadType == 6)

recovery_point(payloadSize) 5
else if(payloadType == 7)

dec_ref_pic_marking_repetition(payloadSize) 5
else if(payloadType == 8)

spare_pic(payloadSize) 5
else if(payloadType == 9)

scene_info(payloadSize) 5
else if(payloadType == 10)

sub_seq_info(payloadSize) 5
else if(payloadType == 11)

sub_seq_layer_characteristics(payloadSize) 5
else if(payloadType == 12)

sub_seq_characteristics(payloadSize) 5

Rec. ITU-T H.264 (08/2021) 329

330

else if(payloadType == 13)

full_frame_freeze(payloadSize)

else if(payloadType == 14)

full_frame_freeze_release(payloadSize)

else if(payloadType == 15)

full_frame_snapshot(payloadSize)

else if(payloadType == 16)

progressive_refinement_segment_start(payloadSize)

else if(payloadType == 17)

progressive_refinement_segment_end(payloadSize)

else if(payloadType == 18)

motion_constrained_slice_group_set(payloadSize)

else if(payloadType == 19)

film_grain_characteristics(payloadSize)

else if(payloadType == 20)

deblocking_filter_display_preference(payloadSize)

else if(payloadType == 21)

stereo_video_info(payloadSize)

else if(payloadType == 22)

post_filter_hint(payloadSize)

else if(payloadType == 23)

tone_mapping_info(payloadSize)

else if(payloadType == 24)

scalability_info(payloadSize) /* specified in Annex G */

else if(payloadType == 25)

sub_pic_scalable_layer(payloadSize) /* specified in Annex G */

else if(payloadType == 26)

non_required_layer_rep(payloadSize) /* specified in Annex G */

else if(payloadType == 27)

priority layer_info(payloadSize) /* specified in Annex G */

else if(payloadType == 28)

layers_not_present(payloadSize) /* specified in Annex G */

else if(payloadType == 29)

layer_dependency_change(payloadSize) /* specified in Annex G */

else if(payloadType == 30)

scalable_nesting(payloadSize) /* specified in Annex G */

else if(payloadType == 31)

base_layer_temporal_hrd(payloadSize) /* specified in Annex G */

else if(payloadType == 32)

quality_layer_integrity_check(payloadSize) /* specified in Annex G */

else if(payloadType == 33)

redundant_pic_property(payloadSize) /* specified in Annex G */

else if(payloadType == 34)

tl0_dep_rep_index(payloadSize) /* specified in Annex G */

else if(payloadType == 35)

tl_switching_point(payloadSize) /* specified in Annex G */

else if(payloadType == 36)

parallel_decoding_info(payloadSize) /* specified in Annex H */

Rec. ITU-T H.264 (08/2021)

else if(payloadType == 37)

mvc_scalable_nesting(payloadSize) /* specified in Annex H */

else if(payloadType == 38)

view_scalability_info(payloadSize) /* specified in Annex H */

else if(payloadType == 39)

multiview_scene_info(payloadSize) /* specified in Annex H */

else if(payloadType == 40)

multiview_acquisition_info(payloadSize) /* specified in Annex H */

else if(payloadType == 41)

non_required_view_component(payloadSize) /* specified in Annex H */

else if(payloadType == 42)

view_dependency_change(payloadSize) /* specified in Annex H */

else if(payloadType == 43)

operation_points_not_present(payloadSize) /* specified in Annex H */

else if(payloadType == 44)

base_view_temporal_hrd(payloadSize) /* specified in Annex H */

else if(payloadType == 45)

frame_packing_arrangement(payloadSize)

else if(payloadType == 46)

multiview_view_position(payloadSize) /* specified in Annex H */

else if(payloadType == 47)

display_orientation(payloadSize)

else if(payloadType == 48)

mvcd_scalable_nesting(payloadSize) /* specified in Annex | */

else if(payloadType == 49)

mvcd_view_scalability _info(payloadSize) /* specified in Annex | */

else if(payloadType == 50)

depth_representation_info(payloadSize) /* specified in Annex | */

else if(payloadType == 51)

three_dimensional_reference_displays_info(payloadSize)
/* specified in Annex | */

else if(payloadType == 52)

depth_timing(payloadSize) /* specified in Annex | */

else if(payloadType == 53)

depth_sampling_info(payloadSize) /* specified in Annex | */

else if(payloadType == 54)

constrained_depth_parameter_set_identifier(payloadSize)
/* specified in Annex J */

else if(payloadType == 56)

green_metadata(payloadSize) /* specified in ISO/IEC 23001-11 */

else if(payloadType == 137)

mastering_display_colour_volume(payloadSize)

else if(payloadType == 142)

colour_remapping_info(payloadSize)

else if(payloadType == 144)

content_light_level_info(payloadSize)

else if(payloadType == 147)

alternative_transfer_characteristics(payloadSize)

Rec. ITU-T H.264 (08/2021)

331

332

else if(payloadType == 148)

ambient_viewing_environment(payloadSize)

else if(payloadType == 149)

content_colour_volume(payloadSize)

else if(payloadType == 150)

equirectangular_projection(payloadSize)

else if(payloadType == 151)

cubemap_projection(payloadSize)

else if(payloadType == 154)

sphere_rotation(payloadSize)

else if(payloadType == 155)

regionwise_packing(payloadSize)

else if(payloadType == 156)

omni_viewport(payloadSize)

else if(payloadType == 181)

alternative_depth_info(payloadSize) /* specified in Annex | */

else if(payloadType == 200)

sei_manifest(payloadSize)

else if(payloadType == 201)

sei_prefix_indication(payloadSize)

else if(payloadType == 202)

annotated_regions(payloadSize)

else if(payloadType == 205)

shutter_interval_info(payloadSize)

else

reserved_sei_message(payloadSize)

if('byte_aligned()) {

bit_equal_to_one /* equal to 1 */ f(1)
while('byte_aligned())
bit_equal_to_zero /* equal to 0 */ f(1)

Rec. ITU-T H.264 (08/2021)

D.1.2

D.1.3

Buffering period SEI message syntax
buffering_period(payloadSize) { C | Descriptor
seq_parameter_set_id 5 ue(v)
if(NalHrdBpPresentFlag)
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minusl; SchedSelldx++) {
initial_cpb_removal_delay[SchedSelldx] 5 u(v)
initial_cpb_removal_delay_offset[SchedSelldx] 5 u(v)
}
if(VcIHrdBpPresentFlag)
for(SchedSelldx = 0; SchedSelldx <= cpb_cnt_minusl; SchedSelldx++) {
initial_cpb_removal_delay[SchedSelldx] 5 u(v)
initial_cpb_removal_delay_offset[SchedSelldx] 5 u(v)
}
}
Picture timing SEI message syntax
pic_timing(payloadSize) { C Descriptor
if(CpbDpbDelaysPresentFlag) {
cpb_removal_delay 5 u(v)
dpb_output_delay 5 u(v)
}
if(pic_struct_present_flag) {
pic_struct 5 u(4)
for(i =0; i < NumClockTsS; i++) {
clock_timestamp_flag[i] 5 u(l)
if(clock_timestamp_flag[i]) {
ct_type 5 u(2)
nuit_field_based_flag 5 u(1)
counting_type 5 u(s)
full_timestamp_flag 5 u(l)
discontinuity_flag 5 u(l)
cnt_dropped_flag 5 u(l)
n_frames 5 u(8)
if(full_timestamp_flag) {
seconds_value /* 0..59 */ 5 u(6)
minutes_value /* 0..59 */ 5 u(6)
hours_value /* 0..23 */ 5 u(s)
}else {
seconds_flag 5 u(1)

if(seconds_flag) {

Rec. ITU-T H.264 (08/2021)

333

seconds_value /* range 0..59 */ 5 u(6)
minutes_flag 5 u(l)
if(minutes_flag) {
minutes_value /* 0..59 */ 5 u(6)
hours_flag 5 u(l)
if(hours_flag)
hours_value /* 0..23 */ 5 u(s)
}
}
}
if(time_offset_length >0)
time_offset 5 i(v)
}
}
}
}
D.1.4 Pan-scan rectangle SEI message syntax
pan_scan_rect(payloadSize) { C Descriptor
pan_scan_rect_id 5 ue(v)
pan_scan_rect_cancel_flag 5 u(l)
if('pan_scan_rect_cancel_flag) {
pan_scan_cnt_minusl 5 ue(v)
for(i=0;i<=pan_scan_cnt_minusl; i++) {
pan_scan_rect_left_offset[i] 5 se(v)
pan_scan_rect _right offset[i] 5 se(v)
pan_scan_rect_top_offset[i] 5 se(v)
pan_scan_rect bottom_offset[i] 5 se(v)
}
pan_scan_rect_repetition_period 5 ue(v)
}
}
D.1.5 Filler payload SEI message syntax
filler_payload(payloadSize) { C Descriptor
for(k = 0; k < payloadSize; k++)
ff_byte /* equal to OXFF */ 5 f(8)

334 Rec. ITU-T H.264 (08/2021)

D.1.6

D.1.7

D.1.8

D.1.9

User data registered by Rec. ITU-T T.35 SEI message syntax

user_data_registered_itu_t_t35(payloadSize) { C Descriptor
itu_t t35_country_code 5 b(8)
if(itu_t_t35 country _code !'= OXFF)
i=1
else {
itu_t t35 _country code_extension_byte 5 b(8)
i=2
}
do {
itu_t t35 payload_byte 5 b(8)
i++
} while(i < payloadSize)
}
User data unregistered SEI message syntax
user_data_unregistered(payloadSize) { C Descriptor
uuid_iso_iec 11578 5 u(128)
for(i=16; i < payloadSize; i++)
user_data_payload_byte 5 b(8)
}
Recovery point SEI message syntax
recovery_point(payloadSize) { C Descriptor
recovery_frame_cnt 5 ue(v)
exact_match_flag 5 u(l)
broken_link_flag 5 u(l)
changing_slice_group_idc 5 u(2)
}
Decoded reference picture marking repetition SEI message syntax
dec_ref _pic_marking_repetition(payloadSize) { C Descriptor
original_idr_flag 5 u(1)
original_frame_num 5 ue(v)
if(Iframe_mbs_only flag) {
original_field_pic_flag 5 u(1)
if(original_field_pic_flag)
original_bottom_field flag 5 u(l)
}
dec_ref_pic_marking() 5

}

Rec. ITU-T H.264 (08/2021)

335

D.1.10 Spare picture SEI message syntax

spare_pic(payloadSize) { C Descriptor
target_frame_num 5 ue(v)
spare_field_flag 5 u(l)
if(spare_field_flag)
target_bottom_field_flag u(l)
num_spare_pics_minusl ue(v)
for(1=0;i<num_spare_pics_minusl + 1; i++) {
delta_spare_frame_num[i] 5 ue(v)
if(spare_field_flag)
spare_bottom_field flag[i] 5 u(l)
spare_area_idc[i] 5 ue(v)
if(spare_area idc[i] == 1)
for(j = 0; j < PicSizelInMapUnits; j++)
spare_unit_flag[i][] 5 u(l)
else if(spare_area_idc[i] == 2){
mapUnitCnt =0
for(j=0; mapUnitCnt < PicSizelInMapUnits; j++) {
zero_run_length[i][]j] 5 ue(v)
mapUnitCnt += zero_run_length[i][j]+ 1
}
}
}
}
D.1.11 Scene information SEI message syntax
scene_info(payloadSize) { C Descriptor
scene_info_present_flag 5 u(l)
if(scene_info_present_flag) {
scene_id ue(v)
scene_transition_type ue(v)
if(scene_transition_type > 3)
second_scene_id 5 ue(v)
}
}

336

Rec. ITU-T H.264 (08/2021)

D.1.12 Sub-sequence information SEI message syntax

sub_seq_info(payloadSize) { C Descriptor
sub_seq_layer_num 5 ue(v)
sub_seq_id 5 ue(v)
first_ref_pic_flag 5 u(l)
leading_non_ref pic_flag 5 u(l)
last_pic_flag 5 u(l)
sub_seq_frame_num_flag 5 u(l)
if(sub_seq_frame_num_flag)
sub_seq_frame_num 5 ue(v)
}
D.1.13 Sub-sequence layer characteristics SEI message syntax
sub_seq_layer_characteristics(payloadSize) { C Descriptor
num_sub_seq_layers_minusl 5 ue(v)
for(layer = O; layer <= num_sub_seq_layers_minusl; layer++) {
accurate_statistics_flag 5 u(l)
average_bit_rate 5 u(16)
average_frame_rate 5 u(16)
}
}
D.1.14 Sub-sequence characteristics SEI message syntax
sub_seq_characteristics(payloadSize) { C Descriptor
sub_seq_layer_num 5 ue(v)
sub_seq_id 5 ue(v)
duration_flag 5 u(l)
if(duration_flag)
sub_seq_duration 5 u(32)
average_rate flag 5 u(l)
if(average_rate flag) {
accurate_statistics_flag 5 u(l)
average_bit_rate 5 u(16)
average_frame_rate 5 u(16)
}
num_referenced_subseqs 5 ue(v)
for(n =0; n <num_referenced_subseqs; n++) {
ref sub_seq layer num 5 ue(v)
ref_sub_seq_id 5 ue(v)
ref sub_seq_direction 5 u(l)
}
}

Rec. ITU-T H.264 (08/2021) 337

D.1.15

D.1.16

D.1.17

D.1.18

D.1.19

D.1.20

338

Full-frame freeze SEI message syntax
full_frame_freeze(payloadSize) { C | Descriptor
full_frame_freeze_repetition_period 5 ue(v)
}
Full-frame freeze release SEI message syntax
full_frame_freeze_release(payloadSize) { C | Descriptor
}
Full-frame snapshot SEI message syntax
full_frame_snapshot(payloadSize) { C | Descriptor
snapshot_id 5 ue(v)
}
Progressive refinement segment start SEI message syntax
progressive_refinement_segment_start(payloadSize) { C Descriptor
progressive_refinement_id 5 ue(v)
num_refinement_steps_minusl 5 ue(v)
}
Progressive refinement segment end SEI message syntax
progressive_refinement_segment_end(payloadSize) { C | Descriptor
progressive_refinement_id 5 ue(v)
}
Motion-constrained slice group set SEI message syntax
motion_constrained_slice_group_set(payloadSize) { C Descriptor
num_slice_groups_in_set_minusl 5 ue(v)
if(num_slice_groups_minusl >0)
for(i =0; i <= num_slice_groups_in_set_minusl; i++)
slice_group_id[i] u(v)
exact_sample_value_match_flag u(l)
pan_scan_rect_flag u(1)
if(pan_scan_rect_flag)
pan_scan_rect _id 5 ue(v)

Rec. ITU-T H.264 (08/2021)

D.1.21 Film grain characteristics SEI message syntax

film_grain_characteristics(payloadSize) { C Descriptor
film_grain_characteristics_cancel_flag 5 u(l)
if(Ifilm_grain_characteristics_cancel_flag) {
film_grain_model_id 5 u(2)
separate_colour_description_present_flag 5 u(l)
if(separate_colour_description_present_flag) {
film_grain_bit_depth_luma_minus8 5 u(3)
film_grain_bit_depth_chroma_minus8 5 u@d)
film_grain_full_range_flag 5 u(l)
film_grain_colour_primaries 5 u(8)
film_grain_transfer_characteristics 5 u(8)
film_grain_matrix_coefficients 5 u(8)
}
blending_mode_id 5 u(2)
log2_scale_factor 5 u(4)
for(c=0;c<3;ct++)
comp_model_present_flag[c] 5 u(l)
for(c=0;c<3;c++)
if(comp_model_present_flag[c]) {
num_intensity_intervals_minusl[c] 5 u(8)
num_model_values_minusl[c] 5 u@d)
for(i=0;i<=num_intensity intervals_minusl[c]; i++) {
intensity_interval_lower_bound[c][i] 5 u(8)
intensity_interval_upper_bound[c][i] 5 u(8)
for(j = 0; j <= num_model_values_minusl[c]; j++)
comp_model_value[c][1][]j] 5 se(v)
}
}
film_grain_characteristics_repetition_period 5 ue(v)
}
}
D.1.22 Deblocking filter display preference SEI message syntax
deblocking_filter_display_preference(payloadSize) { C Descriptor
deblocking_display_preference_cancel_flag 5 u(l)
if(!deblocking_display_preference_cancel_flag) {
display_prior_to_deblocking_preferred_flag 5 u(l)
dec_frame_buffering_constraint_flag 5 u(l)
deblocking_display_preference_repetition_period 5 ue(v)
}
}

Rec. ITU-T H.264 (08/2021) 339

D.1.23 Stereo video information SEI message syntax

stereo_video_info(payloadSize) { C Descriptor
field_views_flag 5 u(1)
if(field_views_flag)
top_field_is_left_view_flag 5 u(1)
else {
current_frame_is_left_view_flag 5 u(1)
next_frame_is_second_view_flag 5 u(l)
}
left_view_self contained_flag 5 u(l)
right_view_self contained_flag 5 u(l)
}

D.1.24 Post-filter hint SEI message syntax

post_filter_hint(payloadSize) { C Descriptor
filter_hint_size y 5 ue(v)
filter_hint_size x 5 ue(v)
filter_hint_type 5 u(2)
for(colour_component = 0; colour_component < 3; colour_component ++)

for(cy = 0; cy < filter_hint_size_y; cy ++)
for(cx = 0; cx < filter_hint_size_x; cx ++)
filter_hint[colour_component][cy][cx] 5 se(v)

additional_extension_flag 5 u(l)

}

340 Rec. ITU-T H.264 (08/2021)

D.1.25 Tone mapping information SEI message syntax

tone_mapping_info(payloadSize) { C Descriptor
tone_map_id 5 ue(v)
tone_map_cancel_flag 5 u(l)
if('tone_map_cancel_flag) {
tone_map_repetition_period 5 ue(v)
coded_data_bit_depth 5 u(8)
target_bit depth 5 u(8)
tone_map_model_id 5 ue(v)
if(tone_map_model_id == 0){
min_value 5 u(32)
max_value 5 u(32)
}
if(tone_map_model_id == 1) {
sigmoid_midpoint 5 u(32)
sigmoid_width u(32)
}
if(tone_map_model_id == 2)
for(i=0;i<(1<<target_bit_depth); i++)
start_of coded_interval[i] 5 u(v)
if(tone_map_model_id == 3){
num_pivots 5 u(16)
for(i=0; i < num_pivots; i++) {
coded_pivot_value[i] u(v)
target_pivot value[i] u(v)
}
}
if(tone_map_model_id == 4) {
camera_iso_speed_idc 5 u(8)
if(camera_iso_speed_idc = = Extended_ISO)
camera_iso_speed_value 5 u(32)
exposure_index_idc 5 u(8)
if(exposure_index_idc == Extended_ISO)
exposure_index_value 5 u(32)
exposure_compensation_value_sign_flag 5 u(l)
exposure_compensation_value_numerator 5 u(16)
exposure_compensation_value_denom_idc 5 u(16)
ref_screen_luminance_white 5 u(32)
extended_range_white_level 5 u(32)
nominal_black_level luma_code_value 5 u(16)
nominal_white_level luma_code_value 5 u(16)
extended_white_level luma_code_value 5 u(16)
}
}
}

Rec. ITU-T H.264 (08/2021)

341

D.1.26 Frame packing arrangement SEI message syntax

frame_packing_arrangement(payloadSize) { C Descriptor
frame_packing_arrangement_id 5 ue(v)
frame_packing_arrangement_cancel_flag 5 u(l)
if(Iframe_packing_arrangement_cancel_flag) {
frame_packing_arrangement_type 5 u(7)
quincunx_sampling_flag 5 u(1)
content_interpretation_type 5 u(6)
spatial_flipping_flag 5 u(l)
frameO_flipped_flag 5 u(l)
field_views_flag 5 u(l)
current_frame_is_frame0_flag 5 u(l)
frameO_self _contained_flag 5 u(l)
framel_self_contained_flag 5 u(l)
if(lquincunx_sampling_flag &&
frame_packing_arrangement_type != 5) {
frameQ_grid_position_x 5 u(4)
frameO_grid_position_y 5 u(4)
framel_grid_position_x 5 u(4)
framel_grid_position_y 5 u(4)
}
frame_packing_arrangement_reserved_byte 5 u(8)
frame_packing_arrangement_repetition_period 5 ue(v)
}
frame_packing_arrangement_extension_flag 5 u(l)
}
D.1.27 Display orientation SEI message syntax
display_orientation(payloadSize) { C Descriptor
display_orientation_cancel_flag 5 u(l)
if(!display_orientation_cancel_flag) {
hor_flip 5 u(1)
ver_flip 5 u(1)
anticlockwise_rotation 5 u(16)
display_orientation_repetition_period 5 ue(v)
display_orientation_extension_flag 5 u(l)
}
}

D.1.28 Green metadata SEI message syntax

The syntax for this SEI message is specified in ISO/IEC 23001-11 (Green metadata), which facilitates reduced power
consumption in decoders, encoders, displays, and in media selection.

342 Rec. ITU-T H.264 (08/2021)

D.1.29 Mastering display colour volume SEI message syntax

mastering_display_colour_volume(payloadSize) { C Descriptor
for(c=0;c<3;c++){
display_primaries_x[c] 5 u(16)
display_primaries_y[¢] 5 u(16)
}
white_point_x 5 u(16)
white_point_y 5 u(1e6)
max_display_mastering_luminance 5 u(32)
min_display_mastering_luminance 5 u(32)
}

Rec. ITU-T H.264 (08/2021) 343

D.1.30 Colour remapping information SEI message syntax

colour_remapping_info(payloadSize) { C | Descriptor
colour_remap_id 5 ue(v)
colour_remap_cancel_flag 5 u(l)
if(!colour_remap_cancel_flag) {
colour_remap_repetition_period 5 ue(v)
colour_remap_video_signal_info_present_flag 5 u(l)
if(colour_remap_video_signal_info_present_flag) {
colour_remap_full_range flag 5 u(l)
colour_remap_primaries 5 u(8)
colour_remap_transfer_function 5 u(8)
colour_remap_matrix_coefficients 5 u(8)
}
colour_remap_input_bit_depth 5 u(8)
colour_remap_output_bit_depth 5 u(8)
for(c=0;c<3;c++){
pre_lut_num_val_minusl[c] 5 u(8)
if(pre_lut_num_val_minusi[c]>0)
for(i=0;i <= pre_lut_num_val_minusl[c];i++){
pre_lut_coded_value[c][i] 5 u(v)
pre_lut_target value[c][i] 5 u(v)
}
}
colour_remap_matrix_present_flag 5 u(l)
if(colour_remap_matrix_present_flag) {
log2_matrix_denom 5 u(4)
for(c=0;c<3;c++)
for(i=0;i<3;i++)
colour_remap_coeffs[c][i] 5 se(v)
}
for(c=0;c<3;c++){
post_lut_num_val_minusl[c] 5 u(8)
if(post_lut_num_val_minusl[c]>0)
for(i=0;i <= post_lut_num_val_minusl[c]; i++){
post_lut_coded_value[c][i] 5 u(v)
post_lut_target value[c][i] 5 u(v)
}
}
}
}

344 Rec. ITU-T H.264 (08/2021)

D.1.31 Content light level information SEI message syntax

content_light_level _info(payloadSize) { C Descriptor
max_content_light_level 5 u(16)
max_pic_average_light_level 5 u(16)

}

D.1.32 Alternative transfer characteristics SEI message syntax

alternative_transfer_characteristics(payloadSize) { C | Descriptor
preferred_transfer_characteristics 5 u(8)

D.1.33 Content colour volume SEI message syntax

content_colour_volume(payloadSize) { C Descriptor
ccv_cancel_flag 5 u(l)
if(Iccv_cancel flag) {
ccv_persistence_flag 5 u(l)
ccv_primaries_present_flag 5 u(l)
ccv_min_luminance_value_present_flag 5 u(l)
ccv_max_luminance_value_present_flag 5 u(l)
ccv_avg_luminance_value_present_flag 5 u(l)
ccv_reserved_zero_2bits 5 u(2)
if(ccv_primaries_present_flag)
for(c=0;c<3;c++){
ccv_primaries X[¢] 5 i(32)
ccv_primaries_y[¢] 5 i(32)
}
if(ccv_min_luminance_value_present_flag)
ccv_min_luminance_value 5 u(32)
if(ccv_max_luminance_value_present_flag)
ccv_max_luminance_value 5 u(32)
if(ccv_avg_luminance_value_present_flag)
ccv_avg_luminance_value 5 u(32)
}
}
D.1.34 Ambient viewing environment SEI message syntax
ambient_viewing_environment(payloadSize) { C Descriptor
ambient_illuminance 5 u(32)
ambient_light_x 5 u(16)
ambient_light vy 5 u(16)
}

Rec. ITU-T H.264 (08/2021) 345

D.1.35 Syntax of omnidirectional video specific SEI messages

D.1.35.1 Equirectangular projection SEI message syntax

equirectangular_projection(payloadSize) { C Descriptor
erp_cancel_flag 5 u(l)
if(lerp_cancel_flag)
erp_persistence_flag 5 u(l)
erp_padding_flag 5 u(l)
erp_reserved_zero_2bits 5 u(2)
if(erp_padding flag == 1){
gp_erp_type 5 u@)
left_gb_erp_width 5 u(8)
right_gb_erp_width 5 u(s)
}
}
}

D.1.35.2 Cubemap projection SEI message syntax

cubemap_projection(payloadSize) { C Descriptor
cmp_cancel_flag 5 u(l)
if('emp_cancel_flag)
cmp_persistence_flag 5 u(l)
}

D.1.35.3 Sphere rotation SEI message syntax

sphere_rotation(payloadSize) { C Descriptor
sphere_rotation_cancel_flag 5 u(l)
if(!sphere_rotation_cancel_flag) {
sphere_rotation_persistence_flag 5 u(l)
sphere_rotation_reserved_zero_6bits 5 u(6)
yaw_rotation 5 i(32)
pitch_rotation 5 i(32)
roll_rotation 5 i(32)
}
}

346 Rec. ITU-T H.264 (08/2021)

D.1.35.4 Region-wise packing SEI message syntax

regionwise_packing(payloadSize) { C Descriptor
rwp_cancel_flag 5 u(l)
if(Irwp_cancel_flag) {
rwp_persistence_flag 5 u(l)
constituent_picture_matching_flag 5 u(l)
rwp_reserved_zero_5bits 5 u(s)
num_packed_regions 5 u(8)
proj_picture_width 5 u(32)
proj_picture_height 5 u(32)
packed_picture_width 5 u(16)
packed_picture_height 5 u(16)
for(i =0; i < num_packed_regions; i++) {
rwp_reserved_zero_4bits[i] 5 u(4)
transform_type[i] 5 u@3)
guard_band_flag[i] 5 u(l)
proj_region_width[i] 5 u(32)
proj_region_height[i] 5 u(32)
proj_region_top[i] 5 u(32)
proj_region_left[i] 5 u(32)
packed_region_width[i] 5 u(16)
packed_region_height[i] 5 u(16)
packed_region_top[i] 5 u(16)
packed_region_left[i] 5 u(16)
if(guard_band_flag[i]) {
left_gb_width[i] 5 u(8)
right_gb_width[i] 5 u(8)
top_gb_height[i] 5 u(8)
bottom_gb_height[i] 5 u(8)
gb_not_used_for_pred_flag[i] 5 u(1)
for(j=0;j<4 j++)
gb_type[i][]] 5 u(3)
rwp_gb_reserved_zero_3bits[i] 5 u@3)
}
}
}
}

Rec. ITU-T H.264 (08/2021) 347

D.1.35.5 Omnidirectional viewport SEI message syntax

omni_viewport(payloadSize) { C Descriptor
omni_viewport_id 5 u(10)
omni_viewport_cancel_flag 5 u(l)
if(lomni_viewport_cancel_flag) {
omni_viewport_persistence_flag 5 u(l)
omni_viewport_cnt_minusl 5 u(4)
for(i=0;i <= omni_viewport_cnt_minusl; i++) {
omni_viewport_azimuth_centre[i] 5 i(32)
omni_viewport_elevation_centre[i] 5 i(32)
omni_viewport_tilt_centre[i] 5 i(32)
omni_viewport_hor_range[i] 5 u(32)
omni_viewport_ver_range[i] 5 u(32)
¥
}
}
D.1.36 SEI manifest SEI message syntax
sei_manifest(payloadSize) { C Descriptor
manifest_num_sei_msg_types 5 u(16)
for(i = 0; i < manifest_num_sei_msg_types; i++) {
manifest_sei_payload_type[i] 5 u(16)
manifest_sei_description[i] 5 u(8)
}
}
D.1.37 SEI prefix indication SEI message syntax
sei_prefix_indication(payloadSize) { C Descriptor
prefix_sei_payload_type 5 u(16)
num_sei_prefix_indications_minusl 5 u(8)
for(i=0;i <= num_sei_prefix_indications_minusl; i++) {
num_bits_in_prefix_indication_minusl[i] 5 u(16)
for(j=0;j <= num_bits_in_prefix_indication_minusl[i]; j++)
sei_prefix_data_bit[i][]] 5 u(l)
while(!byte_aligned())
byte_alignment_bit_equal _to_one /* equal to 1 */ 5 f(1)
}
}

348 Rec. ITU-T H.264 (08/2021)

D.1.38 Annotated regions SEI message syntax

annotated_regions(payloadSize) { C Descriptor
ar_cancel_flag 5 u(l)
if(lar_cancel _flag) {
ar_not_optimized_for_viewing_flag 5 u(l)
ar_true_motion_flag 5 u(l)
ar_occluded_object_flag 5 u(l)
ar_partial_object_flag_present_flag 5 u(l)
ar_object_label_present flag 5 u(l)
ar_object_confidence_info_present_flag 5 u(l)
if(ar_object_confidence_info_present_flag)
ar_object_confidence_length_minusl 5 u(4)
if(ar_object_label present flag) {
ar_object_label_language_present_flag 5 u(l)
if(ar_object_label language_present flag) {
while(!byte_aligned())
ar_bit_equal_to_zero /* equal to 0 */ 5 (1)
ar_object_label_language 5 st(v)
}
ar_num_label_updates 5 ue(v)
for(i=0;i<ar_num_label updates; i++) {
ar_label_idx[i] 5 ue(v)
ar_label_cancel_flag 5 u(l)
LabelAssigned[ar_label_idx[i]] = 'ar_label_cancel_flag
if(lar_label_cancel flag) {
while(!byte_aligned())
ar_bit_equal_to_zero /* equal to 0 */ 5 f(1)
ar_label[ar_label_idx[i]] 5 st(v)
}
}
}
ar_num_object_updates 5 ue(v)
for(i=0;i<ar_num_object_updates; i++) {
ar_object_idx[i] 5 ue(v)
ar_object_cancel_flag 5 u(l)
ObjectTracked[ar_object_idx[i]] = 'ar_object_cancel_flag
if(lar_object_cancel_flag) {
if(ar_object_label_present_flag) {
ar_object_label_update_flag 5 u(l)
if(ar_object_label update flag)
ar_object_label_idx[ar_object_idx[i]] 5 ue(v)
}
ar_bounding_box_update_flag 5 u(l)
if(ar_bounding_box_update _flag) {
ar_bounding_box_cancel_flag 5 u(l)
ObjectBoundingBoxAuvail[ar_object_idx[i]] =
lar_bounding_box_cancel_flag

Rec. ITU-T H.264 (08/2021) 349

if(lar_bounding_box_cancel flag) {

ar_bounding_box_top[ar_object_idx[i]] 5 u(16)
ar_bounding_box_left[ar_object_idx[i]] 5 u(16)
ar_bounding_box_width[ar_object_idx[i]] 5 u(16)
ar_bounding_box_height[ar_object_idx[i]] 5 u(16)
if(ar_partial_object_flag_present_flag)
ar_partial_object_flag[ar_object_idx[i]] 5 u(l)
if(ar_object_confidence_info_present_flag)
ar_object_confidence[ar_object_idx[i]] 5 u(v)
}
}
}
}
}
¥
D.1.39 Shutter interval information SEI message syntax
shutter_interval_info(payloadSize) { C | Descriptor
sii_sub layer idx 5 ue(v)
if(sii_sub layer idx == 0)
shutter interval info present flag 5 u(l)
if(shutter_interval info present flag)
sii_time_scale 5 u(32)
fixed_shutter_interval_within_cvs_flag 5 u(d)
if(fixed shutter interval within cvs flag)
sii_num_units_in_shutter_interval 5 u(32)
else {
sii_max_sub_layers_minusl 5 u@d)
for(i=0;i <= sii_max_sub _layers minusl; i++)
sub_layer num_units in_shutter interval[i] 5 u(32)
}
}
}
b
D.1.40 Reserved SEI message syntax
reserved_sei_message(payloadSize) { C | Descriptor
for(i=0; i< payloadSize; i++)
reserved_sei_message_payload_byte 5 b(8)

D.2 SEI payload semantics

D.2.1 General SEI payload semantics
bit_equal_to_one shall be equal to 1.

bit_equal_to_zero shall be equal to 0.

350 Rec. ITU-T H.264 (08/2021)

The semantics and persistence scope for each SEI message are specified in the semantics specification for each particular
SEI message.

The values of some SEI message syntax elements, including pan_scan_rect_id, scene_id, second_scene_id, snapshot_id,
progressive_refinement_id, tone_map_id, frame_packing_arrangement _id, and colour_remap_id, are split into two sets of
value ranges, where the first set is specified as "may be used as determined by the application”, and the second set is
specified as "reserved for future use by ITU-T | ISO/IEC". Applications should be cautious of potential “collisions” of the
interpretation for values of these syntax elements belonging to the first set of value ranges. Since different applications
might use these IDs having values in the first set of value ranges for different purposes, particular care should be exercised
in the design of encoders that generate SEI messages with these 1Ds having values in the first set of value ranges, and in
the design of decoders that interpret SEI messages with these IDs. This Specification does not define any management for
these values. These IDs having values in the first set of value ranges might only be suitable for use in contexts in which
"collisions" of usage (i.e., different definitions of the syntax and semantics of an SEI message with one of these 1Ds having
the same value in the first set of value ranges) are unimportant, or not possible, or are managed — e.g., defined or managed
in the controlling application or transport specification, or by controlling the environment in which bitstreams are
distributed.

D.2.2 Buffering period SEI message semantics

The presence of the buffering period SEI message in the bitstream is specified as follows:

— If NalHrdBpPresentFlag is equal to 1 or VVclHrdBpPresentFlag is equal to 1, one buffering period SEI message can
be present in any access unit of the bitstream, and one buffering period SEI message shall be present in every IDR
access unit and every access unit associated with a recovery point SEI message.

— Otherwise (NalHrdBpPresentFlag is equal to 0 and VclHrdBpPresentFlag is equal to 0), no buffering period SEI
messages shall be present in any access unit of the bitstream.

NOTE 1 — For some applications, the frequent presence of a buffering period SEI message may be desirable.

A buffering period is specified as the set of access units between two instances of the buffering period SEI message in
decoding order.

seq_parameter_set_id specifies the sequence parameter set for the current coded video sequence. The value of
seq_parameter_set_id shall be equal to the value of seq_parameter_set_id in the picture parameter set referenced by the
primary coded picture associated with the buffering period SEI message. The value of seq_parameter_set_id shall be in
the range of 0 to 31, inclusive.

NOTE 2 — When the sequence parameter set identified by seq_parameter_set_id is not already active, the buffering SEI message
will activate the identified sequence parameter set for the current coded video sequence as specified in clause 7.4.1.2.1.

initial_cpb_removal_delay[SchedSelldx] specifies the delay for the SchedSelldx-th CPB between the time of arrival in
the CPB of the first bit of the coded data associated with the access unit associated with the buffering period SEI message
and the time of removal from the CPB of the coded data associated with the same access unit, for the first buffering period
after HRD initialization. The syntax element has a length in bits given by initial_cpb_removal_delay length_minusl + 1.
It is in units of a 90 kHz clock. initial_cpb_removal_delay[SchedSelldx] shall not be equal to 0 and shall not exceed
90000 * (CpbsSize[SchedSelldx] + BitRate[SchedSelldx]), the time-equivalent of the CPB size in 90 kHz clock units.

initial_cpb_removal_delay_offset[SchedSelldx] is used for the SchedSelldx-th CPB in combination with the
cpb_removal_delay to specify the initial delivery time of coded access units to the CPB.
initial_cpb_removal_delay_offset[SchedSelldx] is in units of a 90 kHz clock. The
initial_cpb_removal_delay_offset[SchedSelldx] syntax element is a fixed length code having a length in bits given by
initial_cpb_removal_delay_length_minusl + 1. This syntax element is not used by decoders and is needed only for the
delivery scheduler (HSS) specified in Annex C.

Over the entire coded video sequence, the sum of initial_cpb_removal_delay[SchedSelldx] and
initial_cpb_removal_delay_offset[SchedSelldx] shall be constant for each value of SchedSelldx.

D.2.3 Picture timing SEI message semantics

NOTE 1 — The syntax of the picture timing SEI message is dependent on the content of the sequence parameter set that is active for
the primary coded picture associated with the picture timing SEI message. However, unless the picture timing SEI message of an
IDR access unit is preceded by a buffering period SEI message within the same access unit, the activation of the associated sequence
parameter set (and, for IDR pictures that are not the first picture in the bitstream, the determination that the primary coded picture is
an IDR picture) does not occur until the decoding of the first coded slice NAL unit of the primary coded picture. Since the coded
slice NAL unit of the primary coded picture follows the picture timing SEI message in NAL unit order, there may be cases in which
it is necessary for a decoder to store the RBSP containing the picture timing SEI message until determining the parameters of the
sequence parameter that will be active for the primary coded picture, and then perform the parsing of the picture timing SEI message.

The presence of the picture timing SEI message in the bitstream is specified as follows:

Rec. ITU-T H.264 (08/2021) 351

— If CpbDpbDelaysPresentFlag is equal to 1 or pic_struct_present_flag is equal to 1, one picture timing SEI message
shall be present in every access unit of the coded video sequence.

— Otherwise (CpbDpbDelaysPresentFlag is equal to 0 and pic_struct_present_flag is equal to 0), no picture timing SEI
messages shall be present in any access unit of the coded video sequence.

cpb_removal_delay specifies how many clock ticks (see clause E.2.1) to wait after removal from the CPB of the access
unit associated with the most recent buffering period SEI message in a preceding access unit before removing from the
buffer the access unit data associated with the picture timing SEI message. This value is also used to calculate an earliest
possible time of arrival of access unit data into the CPB for the HSS, as specified in Annex C. The syntax element is a
fixed length code having a length in bits given by cpb_removal_delay_length_minusl + 1. The cpb_removal_delay is the
remainder of a modulo 2(cpb-removal_delay_length minusl +1) counter,
NOTE 2 — The value of cpb_removal_delay_length_minusl that determines the length (in bits) of the syntax element
cpb_removal_delay is the value of cpb_removal_delay_length_minusl coded in the sequence parameter set that is active for the
primary coded picture associated with the picture timing SEI message, although cpb_removal_delay specifies a number of clock
ticks relative to the removal time of the preceding access unit containing a buffering period SEI message, which may be an access
unit of a different coded video sequence.

dpb_output_delay is used to compute the DPB output time of the picture. It specifies how many clock ticks to wait after
removal of an access unit from the CPB before the decoded picture can be output from the DPB (see clause C.2).
NOTE 3 — A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference" or
"used for long-term reference".
NOTE 4 — Only one dpb_output_delay is specified for a decoded picture.

The length of the syntax element dpb_output_delay is given in bits by dpb_output_delay length_minusl + 1. When
max_dec_frame_buffering is equal to 0, dpb_output_delay shall be equal to 0.

The output time derived from the dpb_output_delay of any picture that is output from an output timing conforming decoder
as specified in clause C.2 shall precede the output time derived from the dpb_output_delay of all pictures in any subsequent
coded video sequence in decoding order.

The output time derived from the dpb_output _delay of the second field, in decoding order, of a complementary
non-reference field pair shall exceed the output time derived from the dpb_output_delay of the first field of the same
complementary non-reference field pair.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCnt() as specified in clauses C.4.1 to C.4.5, except that when the two fields of a complementary
reference field pair have the same value of PicOrderCnt(), the two fields have different output times.

For pictures that are not output by the "bumping" process of clause C.4.5 because they precede, in decoding order, an IDR
picture with no_output_of prior_pics_flag equal to 1 or inferred to be equal to 1, the output times derived from
dpb_output_delay shall be increasing with increasing value of PicOrderCnt() relative to all pictures within the same coded
video sequence subsequent to any picture having a memory_management_control_operation equal to 5.

pic_struct indicates whether a picture should be displayed as a frame or one or more fields, according to Table D-1. Frame
doubling (pic_struct equal to 7) indicates that the frame should be displayed two times consecutively, and frame tripling
(pic_struct equal to 8) indicates that the frame should be displayed three times consecutively.
NOTE 5 — Frame doubling can facilitate the display, for example, of 25p video on a 50p display and 29.97p video on a 59.94p
display. Using frame doubling and frame tripling in combination on every other frame can facilitate the display of 23.98p video on
a 59.94p display.

When pic_struct is present (pic_struct_present_flag is equal to 1), the constraints specified in the third column of Table D-1
shall be obeyed.

NOTE 6 — When pic_struct_present_flag is equal to 0, then in many cases default values may be inferred. In the absence of other
indications of the intended display type of a picture, the decoder should infer the value of pic_struct as follows:

— If field_pic_flag is equal to 1, pic_struct should be inferred to be equal to (1 + bottom_field_flag).
— Otherwise, if TopFieldOrderCnt is equal to BottomFieldOrderCnt, pic_struct should be inferred to be equal to O.
— Otherwise, if TopFieldOrderCnt is less than BottomFieldOrderCnt, pic_struct should be inferred to be equal to 3.

— Otherwise (field_pic_flag is equal to 0 and TopFieldOrderCnt is greater than BottomFieldOrderCnt), pic_struct should be
inferred to be equal to 4.

pic_struct is only a hint as to how the decoded video should be displayed on an assumed display type (e.g., interlaced or progressive)
at an assumed display rate. When another display type or display rate is used by the decoder, then pic_struct does not indicate the
display method, but may aid in processing the decoded video for the alternative display. When it is desired for pic_struct to have an
effective value in the range of 5 to 8, inclusive, pic_struct_present_flag should be equal to 1, as the above inference rule will not
produce these values.

352 Rec. ITU-T H.264 (08/2021)

Table D-1 — Interpretation of pic_struct

Value

Indicated display of picture

Restrictions

NumClockTS

(progressive) frame

field_pic_flag shall be 0,
TopFieldOrderCnt shall be equal to
BottomFieldOrderCnt

1

top field

field_pic_flag shall be 1,
bottom_field flag shall be 0

bottom field

field_pic_flag shall be 1,
bottom_field_flag shall be 1

top field, bottom field, in that order

field_pic_flag shall be 0,
TopFieldOrderCnt shall be less than or
equal to BottomFieldOrderCnt

bottom field, top field, in that order

field_pic_flag shall be 0,
BottomFieldOrderCnt shall be less than
or equal to TopFieldOrderCnt

top field, bottom field, top field repeated,
in that order

field_pic_flag shall be 0,
TopFieldOrderCnt shall be less than or
equal to BottomFieldOrderCnt

bottom field, top field, bottom field
repeated, in that order

field_pic_flag shall be 0,
BottomFieldOrderCnt shall be less than
or equal to TopFieldOrderCnt

frame doubling

field_pic_flag shall be 0,
fixed_frame_rate_flag shall be 1,
TopFieldOrderCnt shall be equal to
BottomFieldOrderCnt

frame tripling

field_pic_flag shall be 0,
fixed_frame_rate_flag shall be 1,
TopFieldOrderCnt shall be equal to
BottomFieldOrderCnt

9..15

reserved

When fixed_frame_rate_flag is equal to 1, it is a requirement of bitstream conformance that the constraints specified as
follows shall be obeyed throughout the operation of the following process, which is operated in output order.

1. Prior to output of the first picture of the bitstream (in output order) and prior to the output of the first picture (in
output order) of each subsequent coded video sequence for which the content of the active sequence parameter set
differs from that of the previously-active sequence parameter set, the variable lastFieldBottom is set equal to "not
determined".

2. After the output of each picture, the value of lastFieldBottom is checked and set as follows, using the values of
field_pic_flag, bottom_field_flag, pic_struct, TopFieldOrderCnt and BottomFieldOrderCnt (when applicable) for
the picture that was output.

If field_pic_flag is equal to 1, it is a requirement of bitstream conformance that the value of lastFieldBottom
shall not be equal to bottom_field_flag. The value of lastFieldBottom is then set equal to bottom_field_flag.

Otherwise (field_pic_flag is equal to 0), the following applies:

— If pic_struct is present and is equal to 3 or 5, it is a requirement of bitstream conformance that the value
of lastFieldBottom shall not be equal to 0. The value of lastFieldBottom is then set equal to

1—((pic_struct—1)>>2).

— Otherwise, if pic_struct is present and is equal to 4 or 6, it is a requirement of bitstream conformance
that the value of lastFieldBottom shall not be equal to 1. The value of lastFieldBottom is then set equal

to ((pic_struct—1)>>2).

Rec. ITU-T H.264 (08/2021)

353

— Otherwise, if TopFieldOrderCnt is less than BottomFieldOrderCnt, it is a requirement of bitstream
conformance that the value of lastFieldBottom shall not be equal to 0. The value of lastFieldBottom is
then set equal to 1.

— Otherwise, if TopFieldOrderCnt is greater than BottomFieldOrderCnt, it is a requirement of bitstream
conformance that the value of lastFieldBottom shall not be equal to 1. The value of lastFieldBottom is
then set equal to 0.

— Otherwise (TopFieldOrderCnt is equal to BottomFieldOrderCnt and pic_struct is not present or is not
in the range of 3 to 6, inclusive), lastFieldBottom may have any value, and its value is not changed.

NumClockTS is determined by pic_struct as specified in Table D-1. There are up to NumClockTS sets of clock timestamp
information for a picture, as specified by clock_timestamp_flag[i] for each set. The sets of clock timestamp information
apply to the field(s) or the frame(s) associated with the picture by pic_struct.

The contents of the clock timestamp syntax elements indicate a time of origin, capture, or alternative ideal display. This
indicated time is computed as

clockTimestamp = ((hH * 60 + mM) * 60 + sS) * time_scale +
nFrames * (num_units_in_tick * (1 + nuit_field based flag)) + tOffset, (D-1)

in units of clock ticks of a clock with clock frequency equal to time_scale Hz, relative to some unspecified point in time
for which clockTimestamp is equal to 0. Output order and DPB output timing are not affected by the value of
clockTimestamp. When two or more frames with pic_struct equal to O are consecutive in output order and have equal
values of clockTimestamp, the indication is that the frames represent the same content and that the last such frame in output
order is the preferred representation.

NOTE 7 — clockTimestamp time indications may aid display on devices with refresh rates other than those well-matched to DPB
output times.

clock_timestamp_flag[i] equal to 1 indicates that a number of clock timestamp syntax elements are present and follow
immediately. clock_timestamp_flag[i] equal to O indicates that the associated clock timestamp syntax elements are not
present. When NumClockTS is greater than 1 and clock_timestamp_flag[i] is equal to 1 for more than one value of i, the
value of clockTimestamp shall be non-decreasing with increasing value of i.

ct_type indicates the scan type (interlaced or progressive) of the source material as specified in Table D-2.
Two fields of a coded frame may have different values of ct_type.

When clockTimestamp is equal for two fields of opposite parity that are consecutive in output order, both with ct_type
equal to O (progressive) or ct_type equal to 2 (unknown), the two fields are indicated to have come from the same original
progressive frame. Two consecutive fields in output order shall have different values of clockTimestamp when the value
of ct_type for either field is 1 (interlaced).

Table D-2 — Mapping of ct_type to source picture scan

Original

Value .
picture scan

progressive

interlaced

unknown

w N |k O

reserved

nuit_field based flag is used in calculating clockTimestamp, as specified in Equation D-1.

counting_type specifies the method of dropping values of the n_frames as specified in Table D-3.

354 Rec. ITU-T H.264 (08/2021)

Table D-3 — Definition of counting_type values

Value Interpretation

0 no dropping of n_frames count values and no use of
time_offset

1 no dropping of n_frames count values

2 dropping of individual zero values of n_frames count

3 dropping of individual MaxFPS — 1 values of n_frames
count

4 dropping of the two lowest (value 0 and 1) n_frames

counts when seconds value is equal to0 and
minutes_value is not an integer multiple of 10

5 dropping of unspecified individual n_frames count values

6 dropping of unspecified numbers of unspecified n_frames
count values

7..31 reserved

full_timestamp_flag equal to 1 specifies that the n_frames syntax element is followed by seconds_value, minutes_value,
and hours_value. full_timestamp_flag equal to 0 specifies that the n_frames syntax element is followed by seconds_flag.

discontinuity_flag equal to 0 indicates that the difference between the current value of clockTimestamp and the value of
clockTimestamp computed from the previous clock timestamp in output order can be interpreted as the time difference
between the times of origin or capture of the associated frames or fields. discontinuity_flag equal to 1 indicates that the
difference between the current value of clockTimestamp and the value of clockTimestamp computed from the previous
clock timestamp in output order should not be interpreted as the time difference between the times of origin or capture of
the associated frames or fields. When discontinuity _flag is equal to 0, the value of clockTimestamp shall be greater than
or equal to all values of clockTimestamp present for the preceding picture in DPB output order.

cnt_dropped_flag specifies the skipping of one or more values of n_frames using the counting method specified by
counting_type.

n_frames specifies the value of nFrames used to compute clockTimestamp. n_frames shall be less than
MaxFPS = Ceil(time_scale + (2 * num_units_in_tick)) (D-2)

NOTE 8 — n_frames is a frame-based counter. For field-specific timing indications, time_offset should be used to indicate a distinct
clockTimestamp for each field.

When counting_type is equal to 2 and cnt_dropped_flag is equal to 1, n_frames shall be equal to 1 and the value of
n_frames for the previous picture in output order shall not be equal to 0 unless discontinuity_flag is equal to 1.
NOTE 9 — When counting_type is equal to 2, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time_scale equal to 50 and num_units_in_tick equal to 2 and
nuit_field_based_flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to 0 when counting (e.g.,
counting n_frames from 0 to 12, then incrementing seconds_value and counting n_frames from 1 to 12, then incrementing
seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 3 and cnt_dropped_flag is equal to 1, n_frames shall be equal to O and the value of

n_frames for the previous picture in output order shall not be equal to MaxFPS — 1 unless discontinuity flag is equal to 1.
NOTE 10 — When counting_type is equal to 3, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time_scale equal to 50 and num_units_in_tick equal to 2 and
nuit_field_based_flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to MaxFPS — 1 when
counting (e.g., counting n_frames from 0 to 12, then incrementing seconds_value and counting n_frames from 0 to 11, then
incrementing seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 4 and cnt_dropped_flag is equal to 1, n_frames shall be equal to 2 and the specified value
of sS shall be zero and the specified value of mM shall not be an integer multiple of ten and n_frames for the previous
picture in output order shall not be equal to 0 or 1 unless discontinuity _flag is equal to 1.

NOTE 11 — When counting_type is equal to 4, the need for increasingly large magnitudes of tOffset in Equation D-1 when using

fixed non-integer frame rates (e.g., 30000+1001 frames per second with time_scale equal to 60000 and num_units_in_tick equal
to 1 001 and nuit_field_based_flag equal to 1) can be reduced by occasionally skipping over the values of n_frames equal to 0 and 1

Rec. ITU-T H.264 (08/2021) 355

when counting (e.g., counting n_frames from 0 to 29, then incrementing seconds_value and counting n_frames from 0 to 29, etc.,
until the seconds_value is zero and minutes_value is not an integer multiple of ten, then counting n_frames from 2 to 29, then
incrementing seconds_value and counting n_frames from 0 to 29, etc.). This counting method is well known in industry and is often
referred to as "NTSC drop-frame" counting.

When counting_type is equal to 5 or 6 and cnt_dropped_flag is equal to 1, n_frames shall not be equal to 1 plus the value
of n_frames for the previous picture in output order modulo MaxFPS unless discontinuity_flag is equal to 1.
NOTE 12 — When counting_type is equal to 5 or 6, the need for increasingly large magnitudes of tOffset in Equation D-1 when

using fixed non-integer frame rates can be avoided by occasionally skipping over some values of n_frames when counting. The
specific values of n_frames that are skipped are not specified when counting_type is equal to 5 or 6.

seconds_flag equal to 1 specifies that seconds_value and minutes_flag are present when full_timestamp_flag is equal to 0.
seconds_flag equal to 0 specifies that seconds_value and minutes_flag are not present.

seconds_value specifies the value of sS used to compute clockTimestamp. The value of seconds_value shall be in the
range of 0 to 59, inclusive. When seconds_value is not present, the previous seconds_value in decoding order shall be used
as sS to compute clockTimestamp.

minutes_flag equal to 1 specifies that minutes_value and hours_flag are present when full_timestamp_flag is equal to 0
and seconds_flag is equal to 1. minutes_flag equal to 0 specifies that minutes_value and hours_flag are not present.

minutes_value specifies the value of mM used to compute clockTimestamp. The value of minutes_value shall be in the
range of 0 to 59, inclusive. When minutes_value is not present, the previous minutes_value in decoding order shall be used
as mM to compute clockTimestamp.

hours_flag equal to 1 specifies that hours_value is present when full_timestamp_flag is equal to 0 and seconds_flag is
equal to 1 and minutes_flag is equal to 1.

hours_value specifies the value of hH used to compute clockTimestamp. The value of hours_value shall be in the range
of 0 to 23, inclusive. When hours_value is not present, the previous hours_value in decoding order shall be used as hH to
compute clockTimestamp.

time_offset specifies the value of tOffset used to compute clockTimestamp. The number of bits used to represent
time_offset shall be equal to time_offset_length. When time_offset is not present, the value 0 shall be used as tOffset to
compute clockTimestamp.

D.2.4 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message syntax elements specify the coordinates of a rectangle relative to the cropping
rectangle of the sequence parameter set. Each coordinate of this rectangle is specified in units of one-sixteenth sample
spacing relative to the luma sampling grid.

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the pan-scan rectangle (for
example, to identify the rectangle as the area to be shown on a particular display device or as the area that contains a
particular actor in the scene). The value of pan_scan_rect_id shall be in the range of 0 to 2% — 2, inclusive.

Values of pan_scan_rect_id from 0 to 255, inclusive, and from 512 to 23 — 1, inclusive, may be used as determined by the
application. Values of pan_scan_rect_id from 256 to 511, inclusive, and from 23! to 2% — 2, inclusive, are reserved for
future use by ITU-T | ISO/IEC. Decoders encountering a value of pan_scan_rect_id in the range of 256 to 511, inclusive,
or in the range of 23! to 232 — 2, inclusive, shall ignore it.

pan_scan_rect_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous pan-scan
rectangle SEI message in output order. pan_scan_rect_cancel_flag equal to 0 indicates that pan-scan rectangle information
follows.

pan_scan_cnt_minusl specifies the number of pan-scan rectangles that are present in the SEI message.
pan_scan_cnt_minusl shall be in the range of 0 to 2, inclusive. pan_scan_cnt_minusl equal to O indicates that a single
pan-scan rectangle is present that applies to all fields of the decoded picture. pan_scan_cnt_minusl shall be equal to 0
when the current picture is a field. pan_scan_cnt_minusl equal to 1 indicates that two pan-scan rectangles are present, the
first of which applies to the first field of the picture in output order and the second of which applies to the second field of
the picture in output order. pan_scan_cnt_minusl equal to 2 indicates that three pan-scan rectangles are present, the first
of which applies to the first field of the picture in output order, the second of which applies to the second field of the picture
in output order, and the third of which applies to a repetition of the first field as a third field in output order.

pan_scan_rect_left_offset[i], pan_scan_rect_right_offset[i], pan_scan_rect top_offset[i], and
pan_scan_rect_bottom_offset[i], specify, as signed integer quantities in units of one-sixteenth sample spacing relative
to the luma sampling grid, the location of the pan-scan rectangle. The values of each of these four syntax elements shall
be in the range of 2% + 1 to 23! — 1, inclusive.

356 Rec. ITU-T H.264 (08/2021)

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to a luma frame sampling grid, as the
region with frame horizontal coordinates from 16*CropUnitX * frame_crop_left_offset + pan_scan_rect_left_offset[i] to
16 * (16 * PicWidthInMbs — CropUnitX * frame_crop_right_offset) + pan_scan_rect_right_offset[i]—1 and with
vertical coordinates from 16 *CropUnitY * frame_crop_top_offset + pan_scan_rect_top_offset[i] to
16 * (16 * PicHeightInMbs — CropUnitY * frame_crop_bottom_offset) + pan_scan_rect_bottom_offset[i]— 1,
inclusive. The value of 16 * CropUnitX * frame_crop_left_offset + pan_scan_rect_left_offset[i] shall be less than or
equal to 16 * (16 * PicWidthInMbs — CropUnitX * frame_crop_right_offset) + pan_scan_rect_right_offset[i] - 1; and
the value of 16 * CropUnitY * frame_crop_top_offset + pan_scan_rect_top_offset[i] shall be less than or equal to
16 * (16 * PicHeightInMbs — CropUnitY * frame_crop_bottom_offset) + pan_scan_rect_bottom_offset[i] — 1.

When the pan-scan rectangular area includes samples outside of the cropping rectangle, the region outside of the cropping
rectangle may be filled with synthesized content (such as black video content or neutral grey video content) for display.

pan_scan_rect_repetition_period specifies the persistence of the pan-scan rectangle SEI message and may specify a
picture order count interval within which another pan-scan rectangle SEI message with the same value of pan_scan_rect_id
or the end of the coded video sequence shall be present in the bitstream. The value of pan_scan_rect_repetition_period
shall be in the range of 0 to 16384, inclusive. When pan_scan _cnt_ minusl is greater than O,
pan_scan_rect_repetition_period shall not be greater than 1.

pan_scan_rect_repetition_period equal to 0 specifies that the pan-scan rectangle information applies to the current decoded
picture only.

pan_scan_rect_repetition_period equal to 1 specifies that the pan-scan rectangle information persists in output order until
any of the following conditions are true:

— A new coded video sequence begins.

— A picture in an access unit containing a pan-scan rectangle SEI message with the same value of pan_scan_rect_id is
output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

pan_scan_rect_repetition_period equal to 0 or equal to 1 indicates that another pan-scan rectangle SEI message with the
same value of pan_scan_rect_id may or may not be present.

pan_scan_rect_repetition_period greater than 1 specifies that the pan-scan rectangle information persists until any of the
following conditions are true:

— A new coded video sequence begins.

— A picture in an access unit containing a pan-scan rectangle SEI message with the same value of pan_scan_rect_id is
output having PicOrderCnt() greater than PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) +
pan_scan_rect_repetition_period.

pan_scan_rect_repetition_period greater than 1 indicates that another pan-scan rectangle SEI message with the same value
of pan_scan_rect_id shall be present for a picture in an access unit that is output having PicOrderCnt() greater than
PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) + pan_scan_rect_repetition_period; unless the
bitstream ends or a new coded video sequence begins without output of such a picture.

D.2.5 Filler payload SEI message semantics
This message contains a series of payloadSize bytes of value OxFF, which can be discarded.

ff_byte shall be a byte having the value OxFF.
D.2.6 User data registered by Rec. ITU-T T.35 SEI message semantics

This message contains user data registered as specified by Rec. ITU-T T.35, the contents of which are not specified by this
Recommendation | International Standard.

itu_t t35_country_code shall be a byte having a value specified as a country code by Rec. ITU-T T.35 Annex A.

itu_t t35 country_code_extension_byte shall be a byte having a value specified as a country code by Rec. ITU-T T.35
Annex B.

itu_t t35_payload_byte shall be a byte containing data registered as specified by Rec. ITU-T T.35.

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more
bytes of the itu_t_t35_payload_byte, in the format specified by the Administration that issued the terminal provider code.
Any remaining itu_t_t35 payload byte data shall be data having syntax and semantics as specified by the entity identified
by the ITU-T T.35 country code and terminal provider code.

Rec. ITU-T H.264 (08/2021) 357

D.2.7 User data unregistered SEI message semantics

This message contains unregistered user data identified by a UUID, the contents of which are not specified by this
Recommendation | International Standard.

uuid_iso_iec_11578 shall have a value specified as a UUID according to the procedures of ISO/IEC 11578:1996 Annex A.

user_data_payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID generator.

D.2.8 Recovery point SEI message semantics

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the coded video
sequence. When the decoding process is started with the access unit in decoding order associated with the recovery point
SEI message, all decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are
indicated to be correct or approximately correct in content. Decoded pictures produced by random access at or before the
picture associated with the recovery point SEI message need not be correct in content until the indicated recovery point,
and the operation of the decoding process starting at the picture associated with the recovery point SEI message may
contain references to pictures not available in the decoded picture buffer.

In addition, by use of the broken_link_flag, the recovery point SEI message can indicate to the decoder the location of
some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process
was begun at the location of a previous IDR access unit in decoding order.
NOTE 1 - The broken_link_flag can be used by encoders to indicate the location of a point after which the decoding process for the
decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the pictures
that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed during the
generation of the bitstream).

The recovery point is specified as a count in units of frame_num increments subsequent to the frame_num of the current
access unit at the position of the SEI message.
NOTE 2 — When HRD information is present in the bitstream, a buffering period SEI message should be associated with the access

unit associated with the recovery point SEI message in order to establish initialization of the HRD buffer model after a random
access.

Any picture parameter set RBSP that is referred to by a picture associated with a recovery point SEI message or by any
picture following such a picture in decoding order shall be available to the decoding process prior to its activation,
regardless of whether or not the decoding process is started at the beginning of the bitstream or with the access unit, in
decoding order, that is associated with the recovery point SEI message.

Any sequence parameter set RBSP that is referred to by a picture associated with a recovery point SEI message or by any
picture following such a picture in decoding order shall be available to the decoding process prior to its activation,
regardless of whether or not the decoding process is started at the beginning of the bitstream or with the access unit, in
decoding order, that is associated with the recovery point SEI message.

recovery_frame_cnt specifies the recovery point of output pictures in output order. All decoded pictures in output order
are indicated to be correct or approximately correct in content starting at the output order position of the reference picture
having the frame_num equal to the frame_num of the VCL NAL units for the current access unit incremented by
recovery frame_cnt in modulo MaxFrameNum arithmetic. recovery frame cnt shall be in the range of 0 to
MaxFrameNum — 1, inclusive.

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order
derived by starting the decoding process at the access unit associated with the recovery point SEI message shall be an exact
match to the pictures that would be produced by starting the decoding process at the location of a previous IDR access unit
in the NAL unit stream. The value 0 indicates that the match need not be exact and the value 1 indicates that the match
shall be exact.

When decoding starts from the location of the recovery point SEI message, all references to not available reference pictures
shall be inferred as references to pictures containing only macroblocks coded using Intra macroblock prediction modes
and having sample values given by Y samples equal to (1<<(BitDepthy—1)), Cb samples equal to
(1 << (BitDepthc — 1)), and Cr samples equal to (1 << (BitDepthc — 1)) (mid-level grey) for purposes of determining
the conformance of the value of exact_match_flag.

NOTE 3 — When performing random access, decoders should infer all references to not available reference pictures as references to

pictures containing only intra macroblocks and having sample values given by Y equal to (1 << (BitDepthy —1)), Cb equal to
(1 << (BitDepthc —1)), and Cr equal to (1 << (BitDepthc — 1)) (mid-level grey), regardless of the value of exact_match_flag.

When exact_match_flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding
process and is not specified by this Recommendation | International Standard.

NOTE 4 — Under some circumstances, the decoding process of pictures depends on the difference DiffPicOrderCnt(picA, picB)
between the PicOrderCnt() values for two pictures picA and picB. However, no particular values of TopFieldOrderCnt and

358 Rec. ITU-T H.264 (08/2021)

BottomFieldOrderCnt (as applicable) are specified to be assigned to the reference pictures that are not available due to the initiation
of random access at the location of a picture associated with a recovery point SEI message. Also, no particular value has been
specified for initialization (for random access purposes) of the related variables prevPicOrderCntMsh, prevPicOrderCntLsb,
prevFraneNumOffset, and prevFrameNum. Thus, any values for these variables may be assigned that could hypothetically have
resulted from operation of the decoding process starting with a hypothetical preceding IDR picture in decoding order, although such
values may not be the same as the values that would have been obtained if the decoding process had started with the actual preceding
IDR picture in the bitstream. When performing random access at a picture associated with a recovery point SEI message, it is
suggested that decoders should derive the picture order count variables TopFieldOrderCnt and BottomFieldOrderCnt according to
the following method:

— A bit range greater than 32 bits should be allocated for the variables TopFieldOrderCnt and BottomFieldOrderCnt for each
current picture to be decoded, as well as for the intermediate variables used for deriving these variables as specified in
clause 8.2.1. (Due to the lack of assurance of correspondence of the values used for initialization of the related variables when
random access is performed to the values that would be obtained if the decoding process had begun with the preceding IDR
picture in decoding order, the calculations involving these variables in the decoding process of subsequent pictures may result
in violation of the 32 bit range.)

— Any value within in the range of —23! to 23! — 1, inclusive, may be assigned to the values of the variables TopFieldOrderCnt

and BottomFieldOrderCnt of the reference pictures that are not available due to the random access operation. For example, the
value 0 may be assigned to these variables.

— For the derivation of the picture order count variables for the picture at which random access is performed,
prevPicOrderCntMsh may be set equal to any integer multiple of MaxPicOrderCntLsb in the range of =231 to 23 — 1, inclusive,
prevPicOrderCntLsb may be set equal to any value in the range of 0 to MaxPicOrderCntLsb —1, inclusive,
prevFrameNumOffset may be set equal to any integer multiple of MaxFrameNum in the range of 0 to 23! — 1, inclusive, and
prevFrameNum may be set equal to any value in the range of 0 to MaxFrameNum — 1, inclusive. For example, the value 0 may
be assigned to all of the variables prevPicOrderCntMsb, prevPicOrderCntLsb, prevFrameNumOffset, and prevFrameNum.

When exact_match_flag is equal to 1, it is a requirement of bitstream conformance that the values of the samples in the
decoded pictures at or subsequent to the recovery point in output order shall be independent of the values that a decoder
assigns to the variables prevPicOrderCntMsb, prevPicOrderCntLsh, prevFrameNumOffset, and prevFrameNum used in
clause 8.2.1 for deriving the picture order count variables for the initialization of the decoding process at the picture
associated with the recovery point SEI message, and of the values that are assigned to the TopFieldOrderCnt and
BottomFieldOrderCnt variables of the reference pictures that are not available due to the random access operation.

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the recovery
point SEI message and is assigned further semantics as follows:

— Ifbroken_link_flag is equal to 1, pictures produced by starting the decoding process at the location of a previous IDR
access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to the access
unit associated with the recovery point SEI message in decoding order should not be displayed until the specified
recovery point in output order.

— Otherwise (broken_link_flag is equal to 0), no indication is given regarding any potential presence of visual artefacts.

Regardless of the value of the broken_link_flag, pictures subsequent to the specified recovery point in output order are
specified to be correct or approximately correct in content.
NOTE 5 — When a sub-sequence information SEI message is present in conjunction with a recovery point SEI message in which
broken_link_flag is equal to 1 and when sub_seq_layer_num is equal to 0, sub_seq_id should be different from the latest sub_seq_id
for sub_seq_layer_num equal to O that was decoded prior to the location of the recovery point SEI message. When broken_link_flag
is equal to 0, the sub_seq_id in sub-sequence layer 0 should remain unchanged.

changing_slice_group_idc equal to 0 indicates that decoded pictures are correct or approximately correct in content at
and subsequent to the recovery point in output order when all macroblocks of the primary coded pictures are decoded
within the changing slice group period, i.e., the period between the access unit associated with the recovery point SEI
message (inclusive) and the specified recovery point (inclusive) in decoding order. changing_slice_group_idc shall be
equal to 0 when num_slice_groups_minusl is equal to 0 in any primary coded picture within the changing slice group
period.

When changing_slice_group_idc is equal to1 or 2, num_slice_groups_minusl shall be equal tol and the
macroblock-to-slice-group map type 3, 4, or 5 shall be applied in each primary coded picture in the changing slice group
period.

changing_slice_group_idc equal to 1 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group O are used for inter prediction of any macroblock within slice group 0. In
addition, changing_slice_group_idc equal to 1 indicates that when all macroblocks in slice group 0 within the changing
slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to
the specified recovery point in output order regardless of whether any macroblock in slice group 1 within the changing
slice group period is decoded.

changing_slice_group_idc equal to 2 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 1 are used for inter prediction of any macroblock within slice group 1. In
addition, changing_slice_group_idc equal to 2 indicates that when all macroblocks in slice group 1 within the changing

Rec. ITU-T H.264 (08/2021) 359

slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to
the specified recovery point in output order regardless of whether any macroblock in slice group 0 within the changing
slice group period is decoded.

changing_slice_group_idc shall be in the range of 0 to 2, inclusive.

D.2.9 Decoded reference picture marking repetition SEI message semantics

The decoded reference picture marking repetition SEI message is used to repeat the decoded reference picture marking
syntax structure that was located in the slice headers of an earlier picture in the same coded video sequence in decoding
order.

original_idr_flag shall be equal to 1 when the decoded reference picture marking syntax structure occurred originally in
an IDR picture. original_idr_flag shall be equal to 0 when the repeated decoded reference picture marking syntax structure
did not occur in an IDR picture originally.

original_frame_num shall be equal to the frame_num of the picture where the repeated decoded reference picture marking
syntax structure originally occurred. The picture indicated by original_frame_num is the previous coded picture having the
specified value of frame_num. The value of original frame num used to refer to a picture having a
memory_management_control_operation equal to 5 shall be 0.

original_field_pic_flag shall be equal to the field_pic_flag of the picture where the repeated decoded reference picture
marking syntax structure originally occurred.

original_bottom_field_flag shall be equal to the bottom_field_flag of the picture where the repeated decoded reference
picture marking syntax structure originally occurred.

dec_ref_pic_marking() shall contain a copy of the decoded reference picture marking syntax structure of the picture that
has a value of frame_num equal to original_frame_num. The IdrPicFlag used in the specification of the repeated
dec_ref_pic_marking() syntax structure shall be the IdrPicFlag of the slice header(s) of the picture that has a value of
frame_num equal to original_frame_num (i.e., ldrPicFlag as used in clause 7.3.3.3 shall be considered equal to
original_idr_flag).

D.2.10 Spare picture SEI message semantics

This SEI message indicates that certain slice group map units, called spare slice group map units, in one or more decoded
reference pictures resemble the co-located slice group map units in a specified decoded picture called the target picture. A
spare slice group map unit may be used to replace a co-located, incorrectly decoded slice group map unit, in the target
picture. A decoded picture containing spare slice group map units is called a spare picture.

A spare picture SEI message shall not be present in an IDR access unit. The value of the PicSizelnMapUnits variable for
the target picture (as specified later in this clause) shall be equal to the value of the PicSizelnMapUnits variable for the
sequence parameter set that is active when processing the spare picture SEI message.

For all spare pictures identified in a spare picture SEI message, the value of frame_mbs_only_flag shall be equal to the
value of frame_mbs_only flag of the target picture in the same SEI message. The spare pictures in the SEI message are
constrained as follows:

— If the target picture is a decoded field, all spare pictures identified in the same SEI message shall be decoded fields.

— Otherwise (the target picture is a decoded frame), all spare pictures identified in the same SEI message shall be
decoded frames.

For all spare pictures identified in a spare picture SEI message, the values of pic_width_in_mbs_minusl and
pic_height_in_map_units_minusl shall be equal to the wvalues of pic_width_in_mbs_minusl and
pic_height_in_map_units_minusl, respectively, of the target picture in the same SEI message. The picture associated (as
specified in clause 7.4.1.2.3) with this SEI message shall appear after the target picture, in decoding order.

target_frame_num indicates the frame_num of the target picture.

spare_field_flag equal to O indicates that the target picture and the spare pictures are decoded frames. spare_field_flag
equal to 1 indicates that the target picture and the spare pictures are decoded fields.

target_bottom_field_flag equal to O indicates that the target picture is a top field. target_bottom_field_flag equal to 1
indicates that the target picture is a bottom field.

A target picture is a decoded reference picture for which the corresponding primary coded picture precedes the current
picture, in decoding order, and in which the values of frame_num, field_pic_flag (when present) and bottom_field flag
(when present) are equal to target_frame_num, spare_field_flag and target_bottom_field_flag, respectively.

360 Rec. ITU-T H.264 (08/2021)

num_spare_pics_minusl indicates the number of spare pictures for the specified target picture. The number of spare
pictures is equal to num_spare_pics_minusl + 1. The value of num_spare_pics_minusl shall be in the range of 0 to 15,
inclusive.

delta_spare_frame_num[i] is used to identify the spare picture that contains the i-th set of spare slice group map units,
hereafter called the i-th spare picture, as specified below. The value of delta_spare_frame_num[i] shall be in the range of
0 to MaxFrameNum — 2 + spare_field_flag, inclusive.

The frame_num of the i-th spare picture, spareFrameNum|[i], is derived as follows for all values of i from 0 to
num_spare_pics_minusl, inclusive:

candidateSpareFrameNum = target_frame_num — 1 + spare_field_flag
for (i=0;i <= num_spare_pics_minusl; i++) {
if(candidateSpareFrameNum < 0)
candidateSpareFrameNum = MaxFrameNum — 1
spareFrameNum[i] = candidateSpareFrameNum — delta_spare_frame_num[i] (D-3)
if(spareFrameNum[i] <0)
spareFrameNum[i] = MaxFrameNum + spareFrameNum[i]
candidateSpareFrameNum = spareFrameNum[i] — 1 + spare_field_flag

}

spare_bottom_field flag[i] equal to O indicates that the i-th spare picture is a top field. spare_bottom_field flag[i]
equal to 1 indicates that the i-th spare picture is a bottom field.

The 0-th spare picture is a decoded reference picture for which the corresponding primary coded picture precedes the target
picture, in decoding order, and in which the values of frame_num, field_pic_flag (when present) and bottom_field flag
(when present) are equal to spareFrameNum[0], spare_field_flag and spare_bottom_field_flag[0], respectively. The i-th
spare picture is a decoded reference picture for which the corresponding primary coded picture precedes the (i—1)-th
spare picture, in decoding order, and in which the values of frame_num, field pic flag (when present) and
bottom_field_flag (when present) are equal to spareFrameNum[i], spare_field_flag and spare_bottom_field_flag[i],
respectively.

spare_area_idc[i] indicates the method used to identify the spare slice group map units in the i-th spare picture.
spare_area_idc[i] shall be in the range of 0 to 2, inclusive. spare_area_idc[i] equal to O indicates that all slice group map
units in the i-th spare picture are spare units. spare_area_idc[i] equal to 1 indicates that the value of the syntax element
spare_unit_flag[i][j] is used to identify the spare slice group map units. spare_area_idc[i] equal to 2 indicates that the
zero_run_length[i][j] syntax element is used to derive the values of spareUnitFlaginBoxOutOrder[i][j], as described
below.

spare_unit_flag[i][j] equal to O indicates that the j-th slice group map unit in raster scan order in the i-th spare picture
is a spare unit. spare_unit_flag[i][j] equal to 1 indicates that the j-th slice group map unit in raster scan order in the i-th
spare picture is not a spare unit.

zero_run_length[i][j] is used to derive the values of spareUnitFlaginBoxOutOrder[i][j] when spare_area_idc[i] is
equal to 2. In this case, the spare slice group map units identified in spareUnitFlaginBoxOutOrder[i][j] appear in counter-
clockwise box-out order, as specified in clause 8.2.2.4, for each spare picture. spareUnitFlaginBoxOutOrder[i][j] equal
to 0 indicates that the j-th slice group map unit in counter-clockwise box-out order in the i-th spare picture is a spare unit.
spareUnitFlaginBoxOutOrder[i][j] equal to 1 indicates that the j-th slice group map unit in counter-clockwise box-out
order in the i-th spare picture is not a spare unit.

When spare_area_idc[0] is equal to 2, spareUnitFlaginBoxOutOrder[0][j] is derived as specified by the following
pseudo-code:

for(j =0, loop = 0; j < PicSizeInMapUnits; loop++) {
for(k =0; k <zero_run_length[O][loop]; k++)
spareUnitFlaginBoxOutOrder[0][j++]=0 (D-4)
spareUnitFlaginBoxOutOrder[0][j++] =1

}

Rec. ITU-T H.264 (08/2021) 361

When spare_area_idc[i] is equal to 2 and the value of i is greater than 0, spareUnitFlaginBoxOutOrder[i][j] is derived
as specified by the following pseudo-code:

for(j =0, loop = 0; j < PicSizeInMapUnits; loop++) {
for(k = 0; k < zero_run_length[i][loop]; k++)
spareUnitFlaginBoxOutOrder[i][j] = spareUnitFlaginBoxOutOrder[i — 1][j++] (D-5)
spareUnitFlaginBoxOutOrder[i][j] = IspareUnitFlaginBoxOutOrder[i — 1][j++]

}

D.2.11 Scene information SEI message semantics

A scene and a scene transition are herein defined as a set of consecutive pictures in output order.

NOTE 1 — Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label
pictures with scene identifiers and to indicate scene changes. The message specifies how the source pictures for the labelled pictures
were created. The decoder may use the information to select an appropriate algorithm to conceal transmission errors. For example,
a specific algorithm may be used to conceal transmission errors that occurred in pictures belonging to a gradual scene transition.
Furthermore, the scene information SEI message may be used in a manner determined by the application, such as for indexing the
scenes of a coded sequence.

A scene information SEI message labels all pictures, in decoding order, from the primary coded picture to which the SEI
message is associated (inclusive), as specified in clause 7.4.1.2.3, to the primary coded picture to which the next scene
information SEI message (if present) in decoding order is associated (exclusive) or (otherwise) to the last access unit in
the bitstream (inclusive). These pictures are herein referred to as the target pictures.

scene_info_present_flag equal to 0 indicates that the scene or scene transition to which the target pictures belong is
unspecified. scene_info_present_flag equal to 1 indicates that the target pictures belong to the same scene or scene
transition.

scene_id identifies the scene to which the target pictures belong. When the value of scene_transition_type of the target
pictures is less than 4, and the previous picture in output order is marked with a value of scene_transition_type less than 4,
and the value of scene_id is the same as the value of scene_id of the previous picture in output order, this indicates that the
source scene for the target pictures and the source scene for the previous picture (in output order) are considered by the
encoder to have been the same scene. When the value of scene_transition_type of the target pictures is greater than 3, and
the previous picture in output order is marked with a value of scene_transition_type less than 4, and the value of scene_id
is the same as the value of scene_id of the previous picture in output order, this indicates that one of the source scenes for
the target pictures and the source scene for the previous picture (in output order) are considered by the encoder to have
been the same scene. When the value of scene_id is not equal to the value of scene_id of the previous picture in output
order, this indicates that the target pictures and the previous picture (in output order) are considered by the encoder to have
been from different source scenes.

The value of scene_id shall be in the range of 0 to 2%2 — 2, inclusive.

Values of scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 23! — 1, inclusive, may be used as
determined by the application. Values of scene_id in the range of 256 to 511, inclusive, and in the range of 23! to 2% — 2,
inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of scene_id in the range of 256
to 511, inclusive, or in the range of 2% to 222 — 2, inclusive, shall ignore (remove from the bitstream and discard) it.

scene_transition_type specifies in which type of a scene transition (if any) the target pictures are involved. The valid
values of scene_transition_type are specified in Table D-4.

Table D-4 — scene_transition_type values

Value Description

No transition
Fade to black
Fade from black

Unspecified transition from or to constant colour
Dissolve

Wipe

Unspecified mixture of two scenes

o O B W[N] O

When scene_transition_type is greater than 3, the target pictures include contents both from the scene labelled by its
scene_id and the next scene, in output order, which is labelled by second_scene_id (see below). The term "the current

362 Rec. ITU-T H.264 (08/2021)

scene" is used to indicate the scene labelled by scene_id. The term "the next scene" is used to indicate the scene labelled
by second_scene_id. It is not required for any following picture, in output order, to be labelled with scene_id equal to
second_scene_id of the current SEI message.

Scene transition types are specified as follows.

"No transition" specifies that the target pictures are not involved in a gradual scene transition.

NOTE 2 — When two consecutive pictures in output order have scene_transition_type equal to 0 and different values of scene_id, a
scene cut occurred between the two pictures.

"Fade to black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade to
black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples of the scene
gradually approach 128.

NOTE 3 — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade to black",
the later one, in output order, is darker than the previous one.

"Fade from black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade
from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma samples of the
scene may gradually diverge from 128.

NOTE 4 — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade from
black", the later one in output order is lighter than the previous one.

"Dissolve" indicates that the sample values of each target picture (before encoding) were generated by calculating a sum
of co-located weighted sample values of a picture from the current scene and a picture from the next scene. The weight of
the current scene gradually decreases from full level to zero level, whereas the weight of the next scene gradually increases
from zero level to full level. When two pictures are labelled to belong to the same scene transition and their
scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output order, is less than the weight
of the current scene for the previous one, and the weight of the next scene for the later one, in output order, is greater than
the weight of the next scene for the previous one.

"Wipe" indicates that some of the sample values of each target picture (before encoding) were generated by copying
co-located sample values of a picture in the current scene and the remaining sample values of each target picture (before
encoding) were generated by copying co-located sample values of a picture in the next scene. When two pictures are
labelled to belong to the same scene transition and their scene_transition_type is "Wipe", the number of samples copied
from the next scene to the later picture in output order is greater than the number of samples copied from the next scene to
the previous picture.

second_scene_id identifies the next scene in the gradual scene transition in which the target pictures are involved. The
value of second_scene_id shall not be equal to the value of scene_id. The value of second_scene_id shall not be equal to
the value of scene_id in the previous picture in output order. When the next picture in output order is marked with a value
of scene_transition_type less than 4, and the value of second_scene_id is the same as the value of scene_id of the next
picture in output order, this indicates that the encoder considers one of the source scenes for the target pictures and the
source scene for the next picture (in output order) to have been the same scene. When the value of second_scene_id is not
equal to the value of scene_id or second_scene_id (if present) of the next picture in output order, this indicates that the
encoder considers the target pictures and the next picture (in output order) to have been from different source scenes.

When the value of scene_id of a picture is equal to the value of scene_id of the following picture in output order and the
value of scene_transition_type in both of these pictures is less than 4, this indicates that the encoder considers the two
pictures to have been from the same source scene. When the values of scene_id, scene_transition_type and
second_scene_id (if present) of a picture are equal to the values of scene_id, scene_transition_type and second_scene_id
(respectively) of the following picture in output order and the value of scen